首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2016年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
African trypanosomes are mammalian pathogens that must regularly change their protein coat to survive in the host bloodstream. Chronic trypanosome infections are potentiated by their ability to access a deep genomic repertoire of Variant Surface Glycoprotein (VSG) genes and switch from the expression of one VSG to another. Switching VSG expression is largely based in DNA recombination events that result in chromosome translocations between an acceptor site, which houses the actively transcribed VSG, and a donor gene, drawn from an archive of more than 2,000 silent VSGs. One element implicated in these duplicative gene conversion events is a DNA repeat of approximately 70 bp that is found in long regions within each BES and short iterations proximal to VSGs within the silent archive. Early observations showing that 70-bp repeats can be recombination boundaries during VSG switching led to the prediction that VSG-proximal 70-bp repeats provide recombinatorial homology. Yet, this long held assumption had not been tested and no specific function for the conserved 70-bp repeats had been demonstrated. In the present study, the 70-bp repeats were genetically manipulated under conditions that induce gene conversion. In this manner, we demonstrated that 70-bp repeats promote access to archival VSGs. Synthetic repeat DNA sequences were then employed to identify the length, sequence, and directionality of repeat regions required for this activity. In addition, manipulation of the 70-bp repeats allowed us to observe a link between VSG switching and the cell cycle that had not been appreciated. Together these data provide definitive support for the long-standing hypothesis that 70-bp repeats provide recombinatorial homology during switching. Yet, the fact that silent archival VSGs are selected under these conditions suggests the 70-bp repeats also direct DNA pairing and recombination machinery away from the closest homologs (silent BESs) and toward the rest of the archive.  相似文献   
2.
Trypanosoma brucei is a master of antigenic variation and immune response evasion. Utilizing a genomic repertoire of more than 1000 Variant Surface Glycoprotein-encoding genes (VSGs), T. brucei can change its protein coat by “switching” from the expression of one VSG to another. Each active VSG is monoallelically expressed from only one of approximately 15 subtelomeric sites. Switching VSG expression occurs by three predominant mechanisms, arguably the most significant of which is the non-reciprocal exchange of VSG containing DNA by duplicative gene conversion (GC). How T. brucei orchestrates its complex switching mechanisms remains to be elucidated. Recent work has demonstrated that an exogenous DNA break in the active site could initiate a GC based switch, yet the source of the switch-initiating DNA lesion under natural conditions is still unknown. Here we investigated the hypothesis that telomere length directly affects VSG switching. We demonstrate that telomerase deficient strains with short telomeres switch more frequently than genetically identical strains with long telomeres and that, when the telomere is short, switching preferentially occurs by GC. Our data supports the hypothesis that a short telomere at the active VSG expression site results in an increase in subtelomeric DNA breaks, which can initiate GC based switching. In addition to their significance for T. brucei and telomere biology, the findings presented here have implications for the many diverse pathogens that organize their antigenic genes in subtelomeric regions.  相似文献   
3.
4.
5.
Cells of Escherichia coli growing on sugars that result in catabolite repression or amino acids that feed into glycolysis undergo a metabolic switch associated with the production and utilization of acetate. As they divide exponentially, these cells excrete acetate via the phosphotransacetylase-acetate kinase pathway. As they begin the transition to stationary phase, they instead resorb acetate, activate it to acetyl coenzyme A (acetyl-CoA) by means of the enzyme acetyl-CoA synthetase (Acs) and utilize it to generate energy and biosynthetic components via the tricarboxylic acid cycle and the glyoxylate shunt, respectively. Here, we present evidence that this switch occurs primarily through the induction of acs and that the timing and magnitude of this induction depend, in part, on the direct action of the carbon regulator cyclic AMP receptor protein (CRP) and the oxygen regulator FNR. It also depends, probably indirectly, upon the glyoxylate shunt repressor IclR, its activator FadR, and many enzymes involved in acetate metabolism. On the basis of these results, we propose that cells induce acs, and thus their ability to assimilate acetate, in response to rising cyclic AMP levels, falling oxygen partial pressure, and the flux of carbon through acetate-associated pathways.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号