首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2015年   1篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   
2.
3.
4.
MOTIVATION: The intensification of DNA sequencing will increasingly unveil uncharacterized species with potential alternative genetic codes. A total of 0.65% of the DNA sequences currently in Genbank encode their proteins with a variant genetic code, and these exceptions occur in many unrelated taxa. RESULTS: We introduce FACIL (Fast and Accurate genetic Code Inference and Logo), a fast and reliable tool to evaluate nucleic acid sequences for their genetic code that detects alternative codes even in species distantly related to known organisms. To illustrate this, we apply FACIL to a set of mitochondrial genomic contigs of Globobulimina pseudospinescens. This foraminifer does not have any sequenced close relative in the databases, yet we infer its alternative genetic code with high confidence values. Results are intuitively visualized in a Genetic Code Logo. Availability and implementation: FACIL is available as a web-based service at http://www.cmbi.ru.nl/FACIL/ and as a stand-alone program.  相似文献   
5.
6.
Linear amplification for deep sequencing (LADS) is an amplification method that produces representative libraries for Illumina next-generation sequencing within 2 d. The method relies on attaching two different sequencing adapters to blunt-end repaired and A-tailed DNA fragments, wherein one of the adapters is extended with the sequence for the T7 RNA polymerase promoter. Ligated and size-selected DNA fragments are transcribed in vitro with high RNA yields. Subsequent cDNA synthesis is initiated from a primer complementary to the first adapter, ensuring that the library will only contain full-length fragments with two distinct adapters. Contrary to the severely biased representation of AT- or GC-rich fragments in standard PCR-amplified libraries, the sequence coverage in T7-amplified libraries is indistinguishable from that of nonamplified libraries. Moreover, in contrast to amplification-free methods, LADS can generate sequencing libraries from a few nanograms of DNA, which is essential for all applications in which the starting material is limited.  相似文献   
7.
The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic methanotroph of the phylum Verrucomicrobia, is presented. Annotation revealed pathways for one-carbon, nitrogen, and hydrogen catabolism and respiration together with central metabolic pathways. The genome encodes three orthologues of particulate methane monooxygenases. Sequencing of this genome will help in the understanding of methane cycling in volcanic environments.  相似文献   
8.
9.
10.
In the postgenomic era it is essential that protein sequences are annotated correctly in order to help in the assignment of their putative functions. Over 1300 proteins in current protein sequence databases are predicted to contain a PAS domain based upon amino acid sequence alignments. One of the problems with the current annotation of the PAS domain is that this domain exhibits limited similarity at the amino acid sequence level. It is therefore essential, when using proteins with low-sequence similarities, to apply profile hidden Markov model searches for the PAS domain-containing proteins, as for the PFAM database. From recent 3D X-ray and NMR structures, however, PAS domains appear to have a conserved 3D fold as shown here by structural alignment of the six representative 3D-structures from the PDB database. Large-scale modelling of the PAS sequences from the PFAM database against the 3D-structures of these six structural prototypes was performed. All 3D models generated (> 5700) were evaluated using prosaii. We conclude from our large-scale modelling studies that the PAS and PAC motifs (which are separately defined in the PFAM database) are directly linked and that these two motifs form the PAS fold. The existing subdivision in PAS and PAC motifs, as used by the PFAM and SMART databases, appears to be caused by major differences in sequences in the region connecting these two motifs. This region, as has been shown by Gardner and coworkers for human PAS kinase (Amezcua, C.A., Harper, S.M., Rutter, J. & Gardner, K.H. (2002) Structure 10, 1349-1361, [1]), is very flexible and adopts different conformations depending on the bound ligand. Some PAS sequences present in the PFAM database did not produce a good structural model, even after realignment using a structure-based alignment method, suggesting that these representatives are unlikely to have a fold resembling any of the structural prototypes of the PAS domain superfamily.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号