首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2001年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
We report a novel mild variant of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) diagnosed in four infants who, in neonatal screening, showed abnormal acylcarnitine profiles indicative of MCADD. Three patients showed completely normal urinary organic acids and phenylpropionic acid loading tests were normal in all four patients. Enzyme studies showed residual MCAD activities between "classical" MCADD and heterozygotes. ACADM gene analysis revealed compound heterozygosity for the common mutation K329E and a novel mutation, Y67H, in two cases, and homozygosity for mutation G267R and the novel mutation S245L, respectively, in two children of consanguineous parents. As in other metabolic disorders, the distinction between "normal" and "disease" in MCAD deficiency is blurring into a spectrum of enzyme deficiency states caused by different mutations in the ACADM gene potentially influenced by factors affecting intracellular protein processing.  相似文献   
2.
Indole-3-butyric acid (IBA) is an endogenous compound that appears to regulate both lateral and adventitious root formation in many plant species and is also the auxin most available commercially for application to promote rooting. IBA is converted to indole-3-acetic acid (IAA) by β-oxidation in the peroxisomes. This process has been observed in a number of plant species and has been shown to be critical for normal root development in response to treatment with IBA. In this study, we investigated this process in hybrid hazelnut (Corylus americana × C. avellana), American elm (Ulmus americana), and Cathedral hybrid elm (U. pumila × U. davidiana var. japonica ‘Cathedral’), in which adventitious rooting is a major bottleneck for vegetative propagation, and the efficacy of IBA treatment is highly variable across different cultivars and at different collection times. Using differentially stable isotope-labeled IBA and IAA tracer and internal standard, respectively, and using gas chromatography coupled with selected reaction monitoring mass spectrometry, IBA-derived IAA was measured in shoot tissue treated with stable isotope-labeled IBA. In elm, higher levels of IBA-to-IAA conversion were generally observed in cultivars which formed adventitious roots most easily in softwood stem cutting trials. IBA-to-IAA conversion was observed in hazelnut genotypes with different rooting abilities and suggested a complex relationship exists between IBA conversion and root organogenesis. In both hazelnut and elm, endogenous free IAA levels were not significantly different across the genotypes examined. High rates of root formation is a key trait for establishment of large-scale production systems. Screening for optimal rates of IBA-to-IAA conversion may facilitate selection against genotypes which respond poorly to exogenous IBA and are thus difficult to propagate using hormone treatment.  相似文献   
3.
4.
Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF‐κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF‐κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1‐ and K63‐linked ubiquitin chains are generated. NF‐κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria‐nucleus contact sites in a HOIP‐dependent manner. Notably, TNF‐induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1‐ubiquitin‐specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF‐mediated NF‐κB activation, both serving as a signaling platform, as well as a transport mode for activated NF‐κB to the nuclear.  相似文献   
5.
Here, we present a summary of our recent findings on the (patho-)physiological relevance of PINK1-phosphorylated ubiquitin (p-S65-Ub). Using novel polyclonal antibodies, we find that p-S65-Ub specifically accumulates on damaged mitochondria. Phosphorylation of ubiquitin on serine 65 depends on the activity of PINK1 and the signal is vastly amplified by the activity of the E3 ubiquitin ligase PARK2/Parkin in a feed-forward loop. The induction of p-S65-Ub in primary cells suggests a significant role of p-S65-Ub also in neurons. Consistent with a marker for damaged mitochondria that are undergoing mitophagy, we find anti-p-S65-Ub immunoreactive granules that partially colocalize with mitochondria, lysosomes and ubiquitin in human post-mortem brain. The number of p-S65-Ub positive granules increases with age and with PD, highlighting the relevance of p-S65-Ub as a potential biomarker and therapeutic target.  相似文献   
6.
Deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMGS) is a recessive disorder of ketogenesis that has been previously diagnosed in two children with hypoglycaemic hypoketotic coma during fasting periods. Here, we report the results of molecular investigations in a third patient affected by this disease. Sequencing of the entire coding region of the HMGCS2 gene revealed two missense mutations, G212R and R500H. Mendelian inheritance was confirmed by the analysis of parental samples and neither of the mutations was found on 200 control chromosomes. Functional relevance was confirmed by in vitro expression studies in cytosolic HMGS-deficient cells. Whereas wild-type cDNA of the HMGCS2 gene reverted the auxotrophy for mevalonate, the cDNAs of the mutants did not. The disease may be recognised by specific clinical and biochemical features but it is difficult to confirm enzymatically since the gene is expressed only in liver and testis. Molecular studies may facilitate or confirm future diagnoses in affected patients.  相似文献   
7.
8.
Trans-activation element DNA-binding protein of 43 kDa (TDP-43) characterizes insoluble protein aggregates in distinct subtypes of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 mediates many RNA processing steps within distinct protein complexes. Here we identify novel TDP-43 protein interactors found in a yeast two-hybrid screen using an adult human brain cDNA library. We confirmed the TDP-43 interaction of seven hits by co-immunoprecipitation and assessed their co-localization in HEK293E cells. As pathological TDP-43 is ubiquitinated, we focused on the ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin isopeptidase Y (UBPY). When cells were treated with proteasome inhibitor, ubiquitinated and insoluble TDP-43 species accumulated. All three UBE2E family members could enhance the ubiquitination of TDP-43, whereas catalytically inactive UBE2E3C145S was much less efficient. Conversely, silencing of UBE2E3 reduced TDP-43 ubiquitination. We examined 15 of the 48 known disease-associated TDP-43 mutants and found that one was excessively ubiquitinated. This strong TDP-43K263E ubiquitination was further enhanced by proteasomal inhibition as well as UBE2E3 expression. Conversely, UBE2E3 silencing and expression of UBPY reduced TDP-43K263E ubiquitination. Moreover, wild-type but not active site mutant UBPY reduced ubiquitination of TDP-43 C-terminal fragments and of a nuclear import-impaired mutant. In Drosophila melanogaster, UBPY silencing enhanced neurodegenerative TDP-43 phenotypes and the accumulation of insoluble high molecular weight TDP-43 and ubiquitin species. Thus, UBE2E3 and UBPY participate in the regulation of TDP-43 ubiquitination, solubility, and neurodegeneration.  相似文献   
9.
ABSTRACT: BACKGROUND: The intracellular deposition of misfolded proteins is a common neuropathological hallmark of most neurodegenerative disorders. Increasing evidence suggests that these pathogenic proteins may spread to neighboring cells and induce the propagation of neurodegeneration. RESULTS: In this study, we have demonstrated that alpha-synuclein (alphaSYN), a major constituent of intracellular inclusions in synucleinopathies, was taken up by neuronal and oligodendroglial cells in both a time- and concentration-dependent manner. Once incorporated, the extracellular alphaSYN was immediately assembled into high-molecular-weight oligomers and subsequently formed cytoplasmic inclusion bodies. Furthermore, alphaSYN uptake by neurons and cells of the oligodendroglial lineage was markedly decreased by the genetic suppression and pharmacological inhibition of the dynamin GTPases, suggesting the involvement of the endocytic pathway in this process. CONCLUSIONS: Our findings shed light on the mode of alphaSYN uptake by neuronal and oligodendroglial cells and identify therapeutic strategies aimed at reducing the propagation of protein misfolding.  相似文献   
10.
Background

Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer’s disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear.

Methods

We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau.

Results

We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt −/−) neurons. Reconstituting tau expression in Mapt −/− neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B–containing NMDA receptors, and do not require binding of Fyn to tau’s major interacting PxxP motif or of tau to microtubules.

Conclusions

Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号