首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   9篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   1篇
  2008年   8篇
  2007年   8篇
  2006年   2篇
  2005年   6篇
  2004年   7篇
  2003年   12篇
  2002年   12篇
  2001年   8篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
Studies were undertaken to assess the postulated involvement of subunit III in the proton-linked functions of cytochrome c oxidase. The effect of pH on the steady-state kinetic [corrected] parameters of subunit III containing and subunit III depleted cytochrome oxidase was determined by using beef heart and rat liver enzymes reconstituted into phospholipid vesicles. The TNmax and Km values for the III-containing enzyme increase with decreasing pH in a manner quantitatively similar to that reported by Thornstrom et al. [(1984) Chem. Scr. 24, 230-235], giving three apparent pKa values of less than 5.0, 6.2, and 7.8. The maximal activities of the subunit III depleted enzymes (beef heart and rat liver) show a similar dependence on pH, but the Km values are consistently higher than those of the III-containing enzyme, an effect that is accentuated at low pH. The pH dependence of TNmax/Km for both forms of the enzyme (+/- subunit III) indicates that protonation of a group with an apparent pKa of 5.7 lowers the affinity for substrate (cytochrome c) independently of a continued increase in maximal velocity. N,N'-Dicyclohexylcarbodiimide (DCCD) decreases the pH responsiveness of the electron-transfer activity to the same extent in both III-containing and III-depleted enzymes, indicating that this effect is mediated by a peptide other than subunit III. Control of intramolecular electron transfer by a transmembrane pH gradient (or alkaline intravesicular pH) is shown to occur in cytochrome oxidase vesicles with cytochrome c as the electron donor, in agreement with results of Moroney et al. [(1984) Biochemistry 23, 4991-4997] using hexaammineruthenium(II) as the reductant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Summary Exudate can be obtained from incisions made in the bark of the stem of actively growing Ricinus plants. 14C-labelled assimilates from a fed leaf are rapidly detected in the exudate. This movement was both acropetal and basipetal from the fed leaf, at rates of over 100 cm h-1. Estimated rates within intact plants were 80–84 cm h-1.In contrast with xylem sap obtained from the same plant, the exudate obtained had an alkaline pH (8.2), a high dry matter content (10–12.5%), high sugar content (8–10%) which was predominantly sucrose; high potassium content (60–80 mM) and low calcium content (0.5–1.0 mM).It is concluded, on the basis of the present evidence, that the exudate is a true sample of the sieve tube sap undergoing translocation.  相似文献   
3.
Cytochrome oxidase is a multisubunit, intrinsic membrane protein with a complex function that includes oxidation of cytochrome c, reduction of oxygen and generation of a membrane potential. To clarify the relationship of its normal function to protein and membrane structure, we have examined the kinetic behavior of rat liver cytochrome oxidase in the intact inner mitochondrial membrane and in detergent solubilized states. Dissolution of rat liver mitochondrial membranes alters the kinetic parameters of the oxidase in a manner dependent in part on the dispersing agent, and characterized by a large increase in maximal activity which is not attributable to exposure of more oxidase or diminished affinity for cytochrome c. The most profound effect of solubilization of the membrane is seen on the low affinity reaction of cytochrome c, suggesting that the electron transfer pathway from this site to oxygen is sensitive to alterations in hydrophobic interactions within the oxidase. Purified rat liver and beef heart oxidase exists predominantly in a monodisperse, 300 kilodalton form in laurylmaltoside (Rosevear et al., 1980). However, a smaller, 130 kd species that exhibits high turnover rates equal to the 300 kd form is detected in some beef heart preparations, implying that the dimer may not be essential for high activity. Radiation inactivation studies on purified oxidase reveal a molecular weight for the functional unit of approximately 70 kd. It is concluded that less than a complete set of subunits may be sufficient for both normal binding of cytochrome c and rapid electron transfer to oxygen.  相似文献   
4.
The coxII/coxIII operon of Rhodobacter sphaeroides cytochrome c oxidase has been sequenced and characterized by insertional inactivation/complementation analysis. The organization of the genes in this locus (coxII.orf1.orf3.coxIII) is the same as that of the equivalent operon of Paracoccus denitrificans (ctaC.ctaB.ctaG.ctaE), but unlike that of other bacteria whose cytochrome oxidase genes have been characterized so far. The predicted amino acid sequence homology with eukaryotic oxidases is also higher for Rb. sphaeroides (and P. denitrificans) than for other bacterial versions of the enzyme. The inactivation of coxII results in loss of the characteristic cytochrome oxidase spectrum from membranes of the mutant strain. Full recovery requires introduction into the bacterium of the complete operon containing coxII.orf1.orf3.coxIII; partial complementation yielding a spectrally altered enzyme is achieved with a plasmid containing coxII or coxII.orf1.orf3. These results indicate that the peptides ORF1, ORF3, and COXIII are all required for assembly of native cytochrome c oxidase, suggesting an oxidase-specific assembly or chaperonin function for the ORFs in Rb. sphaeroides similar to that observed for the homologous gene products in yeast, COX10 and COX11.  相似文献   
5.
Following the demonstration that the rate of evolutionary change in the amino acid sequences of cytochromes c of eukaryotic species was not constant either for a single line of phylogenetic descent during different evolutionary intervals or for separate lines of descent, the concept that neutral mutations account for the vast majority of the evolutionary variations could no longer be accepted. Previous studies had shown that all eukaryotic cytochromes c tested appeared to be functionally indistinguishable in their reaction with mitochondrial respiratory chain components. However, an examination of the kinetics at low ionic strength led to the discovery of a high affinity reaction of cytochrome c with cytochrome c oxidase that revealed large differences in activity between the cytochromes of the horse, baker's yeast and the protist Euglena. Observed Km values for this reaction of 10(-7) to 10(-8) M appear to represent actual dissociation constants, as demonstrated by direct binding studies of cytochrome c with purified cytochrome c oxidase. The high affinity reaction is sensitive to ionic strength and inhibited by ADP and ATP in the range of physiological concentrations, ATP being three times as effective as ADP. The possibility is discussed that this effect of ATP on cytochrome c binding to its oxidase could provide the basis of a mechanism for mitochondrial respiratory control. The demonstration of differences between cytochrome c of various species in this kinetic system opens the way to a systematic study of the possible evolutionary adaptations of cytochromes c to their oxidases.  相似文献   
6.
The SMC5/6 protein complex consists of the Smc5, Smc6 and Non-Smc-Element (Nse) proteins and is important for genome stability in many species. To identify novel components in the DNA repair pathway, we carried out a genetic screen to identify mutations that confer reduced resistance to the genotoxic effects of caffeine, which inhibits the ATM and ATR DNA damage response proteins. This approach identified inactivating mutations in CG5524 and MAGE, homologs of genes encoding Smc6 and Nse3 in yeasts. The fact that Smc5 mutants are also caffeine-sensitive and that Mage physically interacts with Drosophila homologs of Nse proteins suggests that the structure of the Smc5/6 complex is conserved in Drosophila. Although Smc5/6 proteins are required for viability in S. cerevisiae, they are not essential under normal circumstances in Drosophila. However, flies carrying mutations in Smc5, Smc6 and MAGE are hypersensitive to genotoxic agents such as ionizing radiation, camptothecin, hydroxyurea and MMS, consistent with the Smc5/6 complex serving a conserved role in genome stability. We also show that mutant flies are not compromised for pre-mitotic cell cycle checkpoint responses. Rather, caffeine-induced apoptosis in these mutants is exacerbated by inhibition of ATM or ATR checkpoint kinases but suppressed by Rad51 depletion, suggesting a functional interaction involving homologous DNA repair pathways that deserves further scrutiny. Our insights into the SMC5/6 complex provide new challenges for understanding the role of this enigmatic chromatin factor in multi-cellular organisms.  相似文献   
7.

Background

TIA and minor stroke have a high risk of recurrent stroke. Abnormalities on CT/CTA and MRI predict recurrent events in TIA and minor stroke. However there are many other imaging abnormalities that could potentially predict outcome that have not been assessed in this population. Also the definition of recurrent events used includes deterioration due to stroke progression or recurrent stroke and whether imaging is either of these is not known.

Aims

To improve upon the clinical, CT/CTA and MRI parameters that predict recurrent events after TIA and minor stroke by assessing further imaging parameters. Secondary aim was to explore predictors of stroke progression versus recurrent stroke.

Methods

510 consecutive TIA and minor stroke patients had CT/CTA and most had MRI. Primary outcome was recurrent events (stroke progression or recurrent stroke) within 90 days. Further imaging parameters were assessed for prediction of recurrent events (combined outcome of stroke progression and recurrent stroke). We also explored predictors of symptom progression versus recurrence individually.

Results

36 recurrent events (36/510, 7.1% (95% CI: 5.0–9.6)) including 19 progression and 17 recurrent strokes. On CT/CTA: white matter disease, prior stroke, aortic arch focal plaque≥4 mm, or intraluminal thrombus did not predict recurrent events (progression or recurrent stroke). On MRI: white matter disease, prior stroke, and microbleeds did not predict recurrent events. Parameters predicting the individual outcome of symptom progression included: ongoing symptoms at initial assessment, symptom fluctuation, intracranial occlusion, intracranial occlusion or stenosis, and the CT/CTA metric. No parameter was strongly predictive of a distinct recurrent stroke.

Conclusions

There was no imaging parameter that could improve upon our original CT/CTA or MRI metrics to predict the combined outcome of stroke progression or a recurrent stroke after TIA and minor stroke. We are better at using imaging to predict stroke progression rather than recurrent stroke.  相似文献   
8.
9.
Price DM  Jin Z  Rabinovitch S  Campbell SD 《Genetics》2002,161(2):721-731
Wee1 kinases catalyze inhibitory phosphorylation of the mitotic regulator Cdk1, preventing mitosis during S phase and delaying it in response to DNA damage or developmental signals during G2. Unlike yeast, metazoans have two distinct Wee1-like kinases, a nuclear protein (Wee1) and a cytoplasmic protein (Myt1). We have isolated the genes encoding Drosophila Wee1 and Myt1 and are using genetic approaches to dissect their functions during normal development. Overexpression of Dwee1 or Dmyt1 during eye development generates a rough adult eye phenotype. The phenotype can be modified by altering the gene dosage of known regulators of the G2/M transition, suggesting that we could use these transgenic strains in modifier screens to identify potential regulators of Wee1 and Myt1. To confirm this idea, we tested a collection of deletions for loci that can modify the eye overexpression phenotypes and identified several loci as dominant modifiers. Mutations affecting the Delta/Notch signaling pathway strongly enhance a GMR-Dmyt1 eye phenotype but do not affect a GMR-Dwee1 eye phenotype, suggesting that Myt1 is potentially a downstream target for Notch activity during eye development. We also observed interactions with p53, which suggest that Wee1 and Myt1 activity can block apoptosis.  相似文献   
10.
Matecic M  Stuart S  Holmes SG 《Genetics》2002,162(2):973-976
We have identified histone H4 as a high-expression suppressor of Sir2-induced inviability in yeast cells. Overexpression of histone H3 does not suppress Sir2-induced lethality, nor does overexpression of histone H4 alleles associated with silencing defects. These results suggest a direct and specific interaction between Sir2 and H4 in the silencing mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号