首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
  2013年   5篇
  2012年   4篇
  2011年   9篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
2.
We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin''s cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable P-gp substrates such as amprenavir, quinidine, ketoconazole and verapamil do not, regardless of whether they actually use the basolateral transporter.  相似文献   
3.
Microarray-based enrichment of selected genomic loci is a powerful method for genome complexity reduction for next-generation sequencing. Since the vast majority of exons in vertebrate genomes are smaller than 150 nt, we explored the use of short fragment libraries (85–110 bp) to achieve higher enrichment specificity by reducing carryover and adverse effects of flanking intronic sequences. High enrichment specificity (60–75%) was obtained with a relative even base coverage. Up to 98% of the target-sequence was covered more than 20× at an average coverage depth of about 200×. To verify the accuracy of SNP/mutation detection, we evaluated 384 known non-reference SNPs in the targeted regions. At ∼200× average sequence coverage, we were able to survey 96.4% of 1.69 Mb of genomic sequence with only 4.2% false negative calls, mostly due to low coverage. Using the same settings, a total of 1197 novel candidate variants were detected. Verification experiments revealed only eight false positive calls, indicating an overall false positive rate of less than 1 per ∼200 000 bp. Taken together, short fragment libraries provide highly efficient and flexible enrichment of exonic targets and yield relatively even base coverage, which facilitates accurate SNP and mutation detection. Raw sequencing data, alignment files and called SNPs have been submitted into GEO database http://www.ncbi.nlm.nih.gov/geo/ with accession number GSE18542.  相似文献   
4.
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The protein has three components: dI binds NADH, dIII binds NADP+, and dII spans the membrane. Transhydrogenase is a "dimer" of two dI-dII-dIII "monomers"; x-ray structures suggested that the two catalytic sites alternate during turnover. Invariant Tyr146 in recombinant dI of Rhodospirillum rubrum transhydrogenase was substituted with Phe and Ala (proteins designated dI.Y146F and dI.Y146A, respectively). Analytical ultracentrifuge experiments and differential scanning calorimetry show that dI.Y146A more readily dissociates into monomers than wild-type dI. Analytical ultracentrifuge and Trp fluorescence experiments indicate that the dI.Y146A monomers bind NADH much more weakly than dimers. Wild-type dI and dI.Y146F reconstituted activity to dI-depleted membranes with similar characteristics. However, dI.Y146A reconstituted activity in its dimeric form but not in its monomeric form, this despite monomers retaining their native fold and binding to the dI-depleted membranes. It is suggested that transhydrogenase reconstructed with monomers of dI.Y146A is catalytically compromised, at least partly as a consequence of the lowered affinity for NADH, and this results from lost interactions between the nucleotide binding site and the protein beta-hairpin upon dissociation of the dI dimer. The importance of these interactions and their coupling to dI domain rotation in the mechanism of action of transhydrogenase is emphasized. Two peaks in the 1H NMR spectrum of wild-type dI are broadened in dI.Y146A and are tentatively assigned to S-methyl groups of Met resonances in the beta-hairpin, consistent with the segmental mobility of this feature in the structure.  相似文献   
5.
The role of the aristaless-related homeobox gene Alx4 in antero-posterior (AP-) patterning of the developing vertebrate limb has remained somewhat elusive. Polydactyly of Alx4 mutant mice is known to be accompanied by ectopic anterior expression of genes like Shh, Fgf4 and 5'Hoxd. We reported previously that polydactyly in Alx4 mutant mice requires SHH signaling, but we now show that in early Alx4-/- limb buds the anterior ectopic expression of Fgf4 and Hoxd13, and therefore disruption of AP-patterning, occurs independently of SHH signaling. To better understand how Alx4 functions in the pathways that regulate AP-patterning, we also studied genomic regulatory sequences that are capable of directing expression of a reporter gene in a pattern corresponding to endogenous Alx4 expression in anterior limb bud mesenchyme. We observed, as expected for authentic Alx4 expression, expansion of reporter construct expression in a Shh-/- background. Total lack of reporter expression in a Gli3-/- background confirms the existence of Gli3-dependent and -independent Alx4 expression in the limb bud. Apparently, these two modules of Alx4 expression are linked to dissimilar functions.  相似文献   
6.
7.
S(N)1-type alkylating agents, like N-methyl-N-nitrosourea (MNU) and N-ethyl-N-nitrosourea (ENU), are potent mutagens. Exposure to alkylating agents gives rise to O(6)-alkylguanine, a modified base that is recognized by DNA mismatch repair (MMR) proteins but is not repairable, resulting in replication fork stalling and cell death. We used a somatic mutation detection assay to study the in vivo effects of alkylation damage on lethality and mutation frequency in developing zebrafish embryos. Consistent with the damage-sensing role of the MMR system, mutant embryos lacking the MMR enzyme MSH6 displayed lower lethality than wild-type embryos after exposure to ENU and MNU. In line with this, alkylation-induced somatic mutation frequencies were found to be higher in wild-type embryos than in the msh6 loss-of-function mutants. These mutations were found to be chromosomal aberrations that may be caused by chromosomal breaks that arise from stalled replication forks. As these chromosomal breaks arise at replication, they are not expected to be repaired by non-homologous end joining. Indeed, Ku70 loss-of-function mutants were found to be equally sensitive to ENU as wild-type embryos. Taken together, our results suggest that in vivo alkylation damage results in chromosomal instability and cell death due to aberrantly processed MMR-induced stalled replication forks.  相似文献   
8.
The feasibility of dissolved‐core alginate‐templated fluorescent microspheres as “smart tattoo” glucose biosensors was investigated in simulated interstitial fluid (SIF). The sensor works on the principle of competitive binding and fluorescence resonance energy transfer. The sensor consists of multilayer thin film coated alginate microspheres incorporating dye‐labeled glucose receptor and competing ligand within the partially dissolved alginate core. In this study, different approaches for the sensing and detection chemistry were studied, and the response of encapsulated reagents was compared with the solution‐phase counterparts. The glucose sensitivity of the encapsulated TRITC‐Con A/FITC‐dextran (500 kDa) assay in DI water was estimated to be 0.26%/mM glucose while that in SIF was observed to be 0.3%/mM glucose. The glucose sensitivity of TRITC‐apo‐GOx/FITC‐dextran (500 kDa) assay was estimated to be 0.33%/mM glucose in DI water and 0.5%/mM glucose in SIF and both demonstrated a response in the range of 0–50 mM glucose. Therefore, it is hypothesized that the calcium ion concentration outside the microsphere (in the SIF) does not interfere with the response sensitivity. The sensor response was observed to exhibit a maximum response time of 120 s. The system further exhibited a sensitivity of 0.94%/mM glucose with a response in range of 0–50 mM glucose, using near‐infrared dyes (Alexa Fluor‐647‐labeled dextran as donor and QSY‐21‐conjugated apo‐GOx as acceptor), thereby making the sensor more amenable to in vivo use, when implanted in scattering tissue. Biotechnol. Bioeng. 2009; 104: 1075–1085. © 2009 Wiley Periodicals, Inc.  相似文献   
9.
Transhydrogenase couples proton translocation across a membrane to hydride transfer between NADH and NADP+. Previous x-ray structures of complexes of the nucleotide-binding components of transhydrogenase ("dI2dIII1" complexes) indicate that the dihydronicotinamide ring of NADH can move from a distal position relative to the nicotinamide ring of NADP+ to a proximal position. The movement might be responsible for gating hydride transfer during proton translocation. We have mutated three invariant amino acids, Arg-127, Asp-135, and Ser-138, in the NAD(H)-binding site of Rhodospirillum rubrum transhydrogenase. In each mutant, turnover by the intact enzyme is strongly inhibited. Stopped-flow experiments using dI2dIII1 complexes show that inhibition results from a block in the steps associated with hydride transfer. Mutation of Asp-135 and Ser-138 had no effect on the binding affinity of either NAD+ or NADH, but mutation of Arg-127 led to much weaker binding of NADH and slightly weaker binding of NAD+. X-ray structures of dI2dIII1 complexes carrying the mutations showed that their effects were restricted to the locality of the bound NAD(H). The results are consistent with the suggestion that in wild-type protein movement of the Arg-127 side chain, and its hydrogen bonding to Asp-135 and Ser-138, stabilizes the dihydronicotinamide of NADH in the proximal position for hydride transfer.  相似文献   
10.
Plasmid pSEUDO and derivatives were used to show that llmg_pseudo_10 in Lactococcus lactis MG1363 and its homologous locus in L. lactis IL1403 are suitable for chromosomal integrations. L. lactis MG1363 and IL1403 nisin-induced controlled expression (NICE) system derivatives (JP9000 and IL9000) and two general stress reporter strains (NZ9000::PhrcA-GFP and NZ9000::PgroES-GFP) enabling in vivo noninvasive monitoring of cellular fitness were constructed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号