首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   79篇
  国内免费   3篇
  2024年   4篇
  2023年   32篇
  2022年   51篇
  2021年   90篇
  2020年   89篇
  2019年   122篇
  2018年   78篇
  2017年   52篇
  2016年   71篇
  2015年   49篇
  2014年   75篇
  2013年   95篇
  2012年   75篇
  2011年   64篇
  2010年   41篇
  2009年   32篇
  2008年   26篇
  2007年   23篇
  2006年   19篇
  2005年   22篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1980年   1篇
排序方式: 共有1151条查询结果,搜索用时 15 毫秒
1.
2.
Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. In 2012, a new human disease called Middle East respiratory syndrome (MERS) emerged in the Middle East. MERS was caused by a virus that was originally called human coronavirus-Erasmus Medical Center/2012 but was later renamed as Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV causes high fever, cough, acute respiratory tract infection, and multiorgan dysfunction that may eventually lead to the death of the infected individuals. The exact origin of MERS-CoV remains unknown, but the transmission pattern and evidence from virological studies suggest that dromedary camels are the major reservoir host, from which human infections may sporadically occur through the zoonotic transmission. Human to human transmission also occurs in healthcare facilities and communities. Recent studies on Middle Eastern respiratory continue to highlight the need for further understanding the virus-host interactions that govern disease severity and infection outcome. In this review, we have highlighted the major mechanisms of immune evasion strategies of MERS-CoV. We have demonstrated that M, 4a, 4b proteins and Plppro of MERS-CoV inhibit the type I interferon (IFN) and nuclear factor-κB signaling pathways and therefore facilitate innate immune evasion. In addition, nonstructural protein 4a (NSP4a), NSP4b, and NSP15 inhibit double-stranded RNA sensors. Therefore, the mentioned proteins limit early induction of IFN and cause rapid apoptosis of macrophages. MERS-CoV strongly inhibits the activation of T cells with downregulation of antigen presentation. In addition, uncontrolled secretion of interferon ɣ-induced protein 10 and monocyte chemoattractant protein-1 can suppress proliferation of human myeloid progenitor cells.  相似文献   
3.
An autoradiographic method was developed to screen for and isolate soil microorganisms which accumulate zinc (Zn). Diluted soil samples (Rubicon fine sand, Entic Haplorthods [pH 5.9]) were plated on soil extract-glucose agar containing radioactive 65Zn. After 7 days of incubation, individual colonies which accumulated sufficient 65Zn could be detected by autoradiography. These colonies were isolated and confirmed as Zn accumulators in pure culture by using the autoradiographic plate technique. Most Zn accumulators were filamentous fungi, identified as Penicillium janthinellum, Aspergillus fumigatus, and Paecilomyces sp. Isolates of Penicillium janthinellum were the most common Zn accumulators. The most abundant Zn-accumulating bacteria were Bacillus spp. The validity of the autoradiographic plate technique to differentiate soil microbes which accumulate Zn was examined independently by energy dispersive X-ray analysis in a scanning electron microscope. This method confirmed that fungal isolates which gave positive autoradiographic responses in the plate assay bioaccumulated more Zn in their biomass than fungal isolates from the same soil sample which gave negative autoradiographic responses. Thus, this technique can be applied to specifically screen for and isolate microbes from the environment which bioaccumulate Zn.  相似文献   
4.
An autoradiographic method was developed to screen for and isolate soil microorganisms which accumulate zinc (Zn). Diluted soil samples (Rubicon fine sand, Entic Haplorthods [pH 5.9]) were plated on soil extract-glucose agar containing radioactive 65Zn. After 7 days of incubation, individual colonies which accumulated sufficient 65Zn could be detected by autoradiography. These colonies were isolated and confirmed as Zn accumulators in pure culture by using the autoradiographic plate technique. Most Zn accumulators were filamentous fungi, identified as Penicillium janthinellum, Aspergillus fumigatus, and Paecilomyces sp. Isolates of Penicillium janthinellum were the most common Zn accumulators. The most abundant Zn-accumulating bacteria were Bacillus spp. The validity of the autoradiographic plate technique to differentiate soil microbes which accumulate Zn was examined independently by energy dispersive X-ray analysis in a scanning electron microscope. This method confirmed that fungal isolates which gave positive autoradiographic responses in the plate assay bioaccumulated more Zn in their biomass than fungal isolates from the same soil sample which gave negative autoradiographic responses. Thus, this technique can be applied to specifically screen for and isolate microbes from the environment which bioaccumulate Zn.  相似文献   
5.
Given the potential for urban green spaces to provide fresh and healthy environments for humans, exploring the issues that threaten plants in these places is crucial. Phytoplasma-related symptoms were encountered on some plants in urban green spaces in the province of Kerman, southeastern Iran, between 2017 and 2019. Affected periwinkles and petunias exhibited phytoplasma disease symptoms, including virescence, phyllody, and witches'-broom. However, ball or disc-like shoot proliferation symptoms were noticed on the trunks and branches of pine trees. PCR was performed with phytoplasma-detecting universal primers, targetting and amplifying the 16S rRNA gene, and determining whether phytoplasmas are implicated in the symptomatic plants. The infection of the symptomatic plants was confirmed using nested-PCR amplification of expected DNA sizes for phytoplasmas. No product, however, was amplified from sampled symptomless plants. The sequencing of nested-PCR products was performed to obtain sequences encasing the standard F2nR2 fragments. The resulted sequences were submitted to iPhyClassifier, the universal phytoplasma classification platform, for the taxonomic assignment of the found phytoplasmas compared with previously identified ‘Candidatus Phytoplasma’ species, groups, and subgroups. The results revealed that phytoplasma strains related to the species ‘Ca. P. trifolii’ (16SrVI-A subgroup) infect periwinkles and pines. However, strains from the species ‘Ca. P. aurantifolia’ (16SrII-D subgroup) and ‘Ca. P. phoenicium’ (16SrIX-C subgroup) were found in petunias and periwinkles, respectively. To the best of our knowledge, phytoplasmas from the 16SrVI-A and 16SrII-D subgroups are the first reported to infect these plants in Kerman province, while a related strain from the subgroup 16SrIX-C is the first recorded to infect periwinkles in Iran and the second in the world.  相似文献   
6.
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.  相似文献   
7.
Angiogenesis is a vital step in tissue regeneration. Hence, the current study aimed to prepare oxidized dextran (Odex)/collagen (Col)-hydrogels with laminin (LMN), as an angiogenic extracellular matrix (ECM) component, for promoting human umbilical vein endothelial cell (HUVEC) proliferation and function. Odex/Col scaffolds were constructed at various concentrations and temperatures. Using oscillatory rheometry, scanning electron microscopy (SEM), and cell viability testing, the scaffolds were characterized, and then HUVEC proliferation and function was compared with or without LMN. The gelation time could be modified by altering the Odex/Col mass ratio as well as the temperature. SEM showed that Odex/Col hydrogels had a more regular three-dimensional (3D) porous structure than the Col hydrogels. Moreover, HUVECs grew faster in the Col scaffold (12 mg/mL), whereas the Odex (30 mg/mL)/Col (6 mg/mL) scaffold exhibited the lowest apoptosis index. Furthermore, the expression level of vascular endothelial growth factor (VEGF) mRNA in the group without LMN was higher than that with LMN, and the Odex (30 mg/mL)/Col (6 mg/mL) scaffold without LMN had the highest VEGF protein secretion, allowing the cells to survive and function effectively. Odex/Col scaffolds, with or without LMN, are proposed as a tissue engineering construct to improve HUVEC survival and function for angiogenesis.  相似文献   
8.
9.
To identify those glycoproteins whose synthesis or modification is necessary for memory formation, we have studied the uptake of radiolabelled fucose into synaptic plasma membranes (SPMs) and postsynaptic densities (PSDs) derived from two specific left and right forebrain loci, at two different times after training of 1-day-old chicks on a one-trial passive avoidance learning task. To increase the reliability of the comparison, a double-labelling method was used. Tissue samples from intermediate medial hyperstriatum ventrale (IMHV) and lobus parolfactorius (LPO) were isolated at 6 and 24 h after training. At both times, training resulted in region-specific changes, both increases and decreases, in incorporated radioactivity into pre- and postsynaptic glycoproteins. After 6 h, there was a relative decline in incorporation into both SPMs and PSDs of the right IMHV of trained chicks, a decline that persisted in the PSDs until 24 h. A small decline in incorporation in SPMs from the right LPO of trained chicks at 6 h was reversed by 24 h, by which time there was a 64% increase in incorporation into SPMs and a 24% increase into PSDs of the left LPO. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of left and right hemisphere samples containing LPO revealed that 6 h after training the main effect was presynaptic, including a reduction of incorporation into high molecular mass glycoproteins, of 150-180 kDa, and an increase in a lower molecular mass (41 kDa) fraction. By 24 h after training, a left hemisphere presynaptic glycoprotein of molecular mass approximately 50 kDa showed the biggest increase in fucosylation. In addition, a wide group of postsynaptic glycoproteins of both hemispheres, in the ranges 150-180, 100-120, and 33 kDa now showed increases in incorporation. Some other fractions showed decreases. These results are in accord with previous data on incorporation obtained using the amnesic agent 2-deoxygalactose. They also support the hypothesis that memory formation involves the strengthening of connections between pre- and postsynaptic neurons of the LPO by growth or modulation of pre- and postsynaptic structures.  相似文献   
10.
ObjectivesTo assess the prevalence of noncommunicable disease (NCD) risk factors among Saudi university employees and their families; to estimate the cardiovascular risk (CVR) amongst the study population in the following 10years.MethodsThe NCD risk factors prevalence was estimated using a cross-sectional approach for a sample of employees and their families aged ≥ 18 years old, in a Saudi university (Riyadh in Kingdom of Saudi Arabia; KSA). WHO STEPwise standardized tools were used to estimate NCD risk factors and the Framingham Coronary Heart Risk Score calculator was used to calculate the CVR.ResultsFive thousand and two hundred subjects were invited, of whom 4,500 participated in the study, providing a response rate of 87%. The mean age of participants was 39.3±13.4 years. The majority of participants reported low fruit/vegetables consumption (88%), and physically inactive (77%). More than two thirds of the cohort was found to be either overweight or obese (72%), where 36% were obese, and 59% had abdominal obesity. Of the total cohort, 22–37% were found to suffer from dyslipidaemia, 22% either diabetes or hypertension, with rather low reported current tobacco use (12%). One quarter of participants was estimated to have >10% risk to develop cardiovascular disease within the following 10-years.ConclusionThe prevalence of NCD risk factors was found to be substantially high among the university employees and their families in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号