首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
排序方式: 共有4条查询结果,搜索用时 6 毫秒
1
1.
Hyoscyamine (Hyos) and scopolamine (SCP) are drugs widely used as antimuscarinic to treat diseases such as Parkinson’s or to calm schizoid patients. In this study, with the aim of enhancing tropane alkaloid production in H. reticulatus hairy root cultures, the effects of the signalling molecule acetylsalicylic acid (ASA) were investigated at different concentrations (0, 0.01, 0.1 and 1 mM) and inoculation times (24 and 48 h). As well as reducing biomass production, ASA treatment significantly enhanced the activity of catalase, guaiacol peroxidase and ascorbate peroxidase (p < 0.01), which was highest at 48 h of exposure to 1 mM of ASA. The highest accumulation of Hyos and SCP (1.6- and 3.5-fold more than in the control, respectively) was obtained at 24 h of exposure to 0.1 mM ASA. Additionally, semi-quantitative RT-PCR analysis showed an increased expression of the hyoscyamine-6-beta-hydroxylase (h6h) gene, involved in the last Hyos and SCP biosynthetic step, which correlated with the enhanced level of Hyos and SCP production under ASA elicitation. Our findings suggest that ASA, by stimulating the expression of key biosynthetic genes and enzymes, can be applied to increase commercial tropane alkaloid production in a H. reticulatus hairy root system.  相似文献   
2.
Plant Cell, Tissue and Organ Culture (PCTOC) - Azadirachta indica is used to insects repellent, control diabetes, and combat&nbsp;with cancer. In this study, the effect of different...  相似文献   
3.
4.
The medicinal plant Hyoscyamus reticulatus L. is a rich source of hyoscyamine and scopolamine, the tropane alkaloids. The use of hairy root cultures has focused significant attention on production of important metabolites such as stable tropane alkaloid production. Elicitation is an effective approach to induce secondary metabolite biosynthetic pathways. Hairy roots were derived from cotyledon explants inoculated with Agrobacterium rhizogenes and elicited by iron oxide nanoparticles (FeNPs) at different concentrations (0, 450, 900, 1800, and 3600 mg L?1) for different exposure times (24, 48, and 72 h). The highest hairy root fresh and dry weights were found in the medium supplemented with 900 mg L?1 FeNPs. Antioxidant enzyme activity was significantly increased in induced hairy roots compared to non-transgenic roots. The highest hyoscyamine and scopolamine production (about fivefold increase over the control) was achieved with 900 and 450 mg L?1 FeNPs at 24 and 48 h of exposure time, respectively. This is the first report of the effect of FeNP elicitor on hairy root cultures of a medicinal plant. We suggest that FeNPs could be an effective elicitor in hairy root cultures in order to increase tropane alkaloid production.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号