首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   13篇
  2024年   1篇
  2021年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   9篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
1.
The polycation protamine sulfate increases microvascular permeability in the kidney by reducing glomerular charge. We have exposed the pulmonary vasculature to protamine sulfate to determine whether electrical charges play a role in protein permeability in lung vascular beds. In anephric rats, protamine sulfate increased hematocrit approximately 25%. With protamine sulfate doses of 0.08 and 0.04 mg/g body wt, lung blood-free wet-to-dry weight ratios were increased (5.24 +/- 0.8 and 4.89 +/- 0.7) compared with control (3.85 +/- 0.3) (P less than 0.05). In isolated, ventilated, and perfused lungs 0.04 mg/g body wt protamine sulfate increased pulmonary arterial pressure from 5.2 +/- 1.4 to 16.3 +/- 3.9 mmHg (P less than 0.01). These lungs gained weight and lung wet-to-dry weight ratios were significantly increased (15.33 +/- 4.26 compared with 6.04 +/- 0.24 for control lungs). Poly-L-lysine, another polycation, also caused significant increases in pulmonary arterial pressure, lung weight, and lung wet-to-dry weight ratios. The addition of diphenhydramine to the perfusate 10 min before the addition of protamine sulfate did not prevent these changes. Heparin (90 U/mg protamine sulfate) reversed the abnormalities. Pulmonary arterial pressure (7.0 +/- 1.1 mmHg) was not significantly different from the control value, lung weight did not increase, and the lung wet-to-dry weight ratio was 6.24 +/- 0.23 (P greater than 0.05). We conclude that polycations have a significant effect on pulmonary vascular resistance and perhaps on permeability.  相似文献   
2.
3.
To investigate the cellular proteins involved in simian virus 40 (SV40) replication, extracts derived from human 293 cells have been fractionated into multiple components. When such fractions are combined with the virus-encoded T antigen (TAg) and SV40 origin containing plasmid DNA, efficient and complete replication is achieved, while each fraction alone is inactive. At present, a minimum of eight such cellular components have been identified. Previous experiments have demonstrated one of these to be the cell-cycle-regulated proliferating-cell nuclear antigen (PCNA). As PCNA has been identified as a processivity factor for DNA polymerase delta, we suggest that both polymerases alpha and delta are involved in this system. Three further fractions have been identified. One is a partially purified fraction which, under certain conditions, is required with TAg for the formation of a pre-synthesis complex of proteins at the replication origin. The second of these factors, RF-A, is a complex of three polypeptides which may function as a eucaryotic SSB. The third, RF-C, is a factor which is required, with PCNA, for coordinated leading- and lagging-strand synthesis at the replication fork. Complete synthesis and segregation of the daughter molecules also requires the presence of topoisomerases I and II. These results suggest a model for DNA synthesis which involves multiple stages prior to and during replicative DNA synthesis.  相似文献   
4.
We undertook studies in the isolated perfused rat lung to determine 1) the effects of endothelial charge neutralization with the polycation protamine sulfate on microvascular permeability, lung water, and anionic ferritin binding to the endothelium and 2) the role of heparan sulfate and hyaluronate, negatively charged cell surface glycosaminoglycans, on permeability. Capillary permeability was determined by tissue 125I-albumin accumulation in isolated perfused rat lungs. In control lungs the 5-min albumin uptake was 0.50 +/- 0.05 cm3.s-1.g dry tissue-1 X 10(-3). It was increased by 132 +/- 7.8% (P less than 0.001) by protamine (0.08 mg/ml) and 65 +/- 12% (P less than 0.01) by heparinase (5 U/ml), whereas hyaluronidase (25 NFU/ml) was without effect. In control lungs total water was 4.83 +/- 0.15 ml g/dry tissue. Protamine increased lung water 12 +/- 2% (P less than 0.05). Heparinase caused a 9 +/- 3% increase (P less than 0.05), and hyaluronidase had no effect. Electron microscopy demonstrated that protamine increased anionic ferritin binding to the surface of endothelial cells. We conclude that protamine sulfate neutralization of negative charge in the pulmonary microcirculation leads to increased microvascular permeability. Heparin sulfate may be responsible for this charge effect.  相似文献   
5.
We have developed a high efficiency system in which mammalian extracts join DNA double-strand breaks with non-complementary termini. This system has been used to obtain a large number of junction sequences from a range of different break-end combinations, allowing the elucidation of the joining mechanisms. Using an extract of calf thymus it was found that the major mechanism of joining was by blunt-end ligation following removal or fill-in of the single-stranded bases. However, some break-end combinations were joined through an efficient mechanism using short repeat sequences and we have succeeded in separating this mechanism from blunt-end joining by the biochemical fractionation of extracts. Characterization of activities and sequence data in an extensively purified fraction that will join ends by the repeat mechanism led to a model where joining is initiated by 3' strand invasion followed by pairing to short repeat sequences close to the break site. Thus the joining of double-strand breaks by mammalian extracts is achieved by several mechanisms and this system will allow the purification of the factors involved in each by the judicial choice of the non-complementary ends used in the assay.  相似文献   
6.
7.
alpha-Lactalbumin (alpha LA) forms a well-populated equilibrium molten globule state, while the homologous protein hen lysozyme does not. alpha LA is a two-domain protein and the alpha-domain is more structured in the molten globule state than is the beta-domain. Peptide models derived from the alpha-subdomain that contain the A, B, D, and 3(10) helices of alpha LA are capable of forming a molten globule state in the absence of the remainder of the protein. Here we report comparative studies of a peptide model derived from the same region of hen lysozyme and a set of chimeric alpha-lactalbumin--lysozyme constructs. Circular dichroism, dynamic light scattering, sedimentation equilibrium, and fluorescence experiments indicate that the lysozyme construct does not fold. Chimeric constructs were prepared to probe the origins of the difference in the ability of the two isolated subdomains to fold. The first consists of the A and B helices of alpha LA cross-linked to the D and C-terminal 3(10) helices of lysozyme. This construct is highly helical, while a second construct that contains the A and B helices of lysozyme cross-linked to the D and 3(10) helices of alpha LA does not fold. Furthermore, the disulfide cross-linked homodimer of the alpha LA AB peptide is helical, while the homodimer of the lysozyme AB peptide is unstructured. Thus, the AB helix region of alpha LA appears to have an intrinsic ability to form structure as long as some relatively nonspecific interactions can be made with other regions of the protein. Our studies show that the A and B helices plays a key role in the ability of the respective alpha-subdomains to fold.  相似文献   
8.
The cis-trans isomerisation of maleylacetoacetate to fumarylacetoacetate is the penultimate step in the tyrosine/phenylalanine catabolic pathway and has recently been shown to be catalysed by glutathione S-transferase enzymes belonging to the zeta class. Given this primary metabolic role it is unsurprising that zeta class glutathione S-transferases are well conserved over a considerable period of evolution, being found in vertebrates, plants, insects and fungi. The structure of this glutathione S-transferase, cloned from Arabidopsis thaliana, has been solved by single isomorphous replacement with anomalous scattering and refined to a final crystallographic R-factor of 19.6% using data from 25.0 A to 1.65 A. The zeta class enzyme adopts the canonical glutathione S-transferase fold and forms a homodimer with each subunit consisting of 221 residues. In agreement with structures of glutathione S-transferases from the theta and phi classes, a serine residue (Ser17) is present in the active site, at a position that would allow it to stabilise the thiolate anion of glutathione. Site-directed mutagenesis of this residue confirms its importance in catalysis. In addition, the role of a highly conserved cysteine residue (Cys19) present in the active site of the zeta class glutathione S-transferase enzymes is discussed.  相似文献   
9.
Oxygen-glucose deprivation (OGD) induced neuron-specific cell death in organotypic hippocampal slice cultures. Neuronal death was first evident in the CA1 region 24 h after the injury as assessed by propidium iodide (PI) labeling, and continued to extend to the CA3/4 region up to 72 h. At 6 days post-OGD, PI labeling was weak and diffuse with no clear demarcation of pyknotic nuclei. To characterize biochemical changes produced by OGD, cellular efflux of three key amino acid neurotransmitters was evaluated. OGD elicited large increases in the release of GABA and aspartate (55- and 4.5-fold increase over basal, respectively), while there were no detectable changes in extracellular glutamate levels. In order to ascertain the existence of the synaptic pool of glutamate, sister cultures were treated with sodium azide. This evoked a strong increase in glutamate release, suggesting the intactness of the glutamate system. Further studies revealed a time-dependent activation of caspase 3 following OGD, shown by immunoblot analysis as well as by confocal laser scanning microscopy. While we did not observe the activation of caspases 1, 2, or 8 in our model, the activation of caspase 9 was evident, peaking at 12 h post-OGD. Despite no apparent increase in glutamate release by ischemic slices, treatment with a N-methyl-D-aspartate (NMDA) antagonist or an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist significantly reduced neuronal death. Furthermore, a pan-caspase inhibitor (zVAD-fmk), but not the caspase 3 inhibitor (DEVD-fmk), provided partial neuroprotection. Inhibition of a Ca(2+)-dependent cysteine protease, calpain, by MDL28170 also elicited partial neuroprotective effects.  相似文献   
10.
Intracellular trafficking depends on the docking and fusion of transport vesicles with cellular membranes. Central to docking and fusion is the pairing of SNARE proteins (soluble NSF attachment protein receptors) associated with the vesicle and target membranes (v- and t-SNAREs, respectively). Here, the X-ray structure of an N-terminal conserved domain of the neuronal t-SNARE syntaxin-1A was determined to a resolution of 1.9 A using multiwavelength anomalous diffraction. This X-ray structure, which is in general agreement with an NMR structure of a similar fragment, provides new insight into the interaction surface between the N-terminal domain and the remainder of the protein. In vitro characterization of the intact cytoplasmic domain of syntaxin revealed that it forms dimers, and probably tetramers, at low micromolar concentrations, with concomitant structural changes that can be detected by limited proteolysis. These observations suggest that the promiscuity characteristic of pairing between v-SNAREs and t-SNAREs extends to the formation of homo-oligomeric t-SNARE complexes as well. They also suggest a potential role for the neuronal Sec1 protein (nSec1) in preventing the formation of syntaxin multimers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号