首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   8篇
  2022年   6篇
  2021年   7篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   4篇
  2012年   12篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2000年   1篇
  1998年   2篇
  1986年   2篇
  1980年   1篇
  1975年   1篇
排序方式: 共有114条查询结果,搜索用时 78 毫秒
1.
The hormones 17β-estradiol, 17α-hydroxy-20β-dihydroprogesterone(17α, 20β-P), 11-ketotestosterone, testosterone, gonadotropin and also vitellogenin, were determined during the spawning migration of wild pink salmon in the Fraser and Thompson Rivers in British Columbia. This stock of pink salmon takes approximately 2 weeks to migrate the 333 km upstream to the spawning grounds. Both sexes were at an advanced stage of sexual development when they entered fresh water. In females both the 17β-estradiol and vitellogenin levels fell precipitously during the migration, to be very low at spawning, whereas the 17α,20β-P level rose rapidly, to be highest at arrival on the spawning grounds. The gonadotropin level also rose rapidly during the migration, and was highest in spent fish. Testosterone was at a high level throughout, although this level decreased steadily during migration. In many respects similar endocrine changes were observed in the male. For example, in the case of androgen levels, both testosterone and 11-ketotestosterone fell steadily during migration but were still relatively high at spawning, whereas both gonadotropin and 17α, 20β-P levels rose markedly as migration progress. However, although the qualitative changes were often similar between the sexes, the levels of 17α, 20β-P, testosterone, and gonadotropin were considerably higher throughout in females than in males. It is concluded that this stock of pink salmon is at an advanced stage of sexual development when it enters fresh water. The endocrine changes observed during this study represent those controlling the final stages of reproduction, specifically final oocyte maturation and ovulation in females, and the final stages of spermatogenesis and spermiation in males.  相似文献   
2.
3.
The construction of a new phagemid vector for display of peptides on the pVIII major coat protein of filamentous bacteriophage is described, in which expression of pVIII-peptide fusions was placed under the control of the arabinose-inducible PBAD promoter. The new phagemid showed excellent capacity for the regulation of peptide expression, as judged by enzyme-linked immunosorbent assay (ELISA) and electron microscopy of immunogold-labeled FLAG peptides displayed on phages. Regulation of the density of peptide fusions displayed on phages may offer advantages in the search for new peptide ligands due to the possibility of regulating the stringency of binding, reducing selection based on avidity effects during biopanning. Furthermore, the peptide expression in the absence of inducer was effectively shut off, minimizing growth bias of individual clones. A 9-mer phage display library prepared using the constructed phagemid was generated by insertion of randomly synthesized oligonucleotides close to the N-terminal of the pVIII protein. The library comprised a total of 9.4 × 109 unique transformants, and was confirmed to show high diversity. The functional utility of the library was confirmed by the successful affinity selection of peptides binding to matrix metalloproteinase-9 (MMP-9). The majority of selected peptides shared the consensus motif R(D/N)XXG(M/L)(V/I)XQ, not previously selected during biopanning against MMP-9.  相似文献   
4.
Hydroxysteroid (17-beta) dehydrogenase 2 (HSD17B2) is a member of aldo-keto reductase superfamily, known to catalyze the inactivation of 17beta-hydroxysteroids to less active 17-keto forms and catalyze the conversion of 20alpha-hydroxyprogesterone to progesterone in vitro. To examine the role of HSD17B2 in vivo, we generated mice deficient in Hsd17b2 [HSD17B2 knockout (KO)] by a targeted gene disruption in embryonic stem cells. From the homozygous mice carrying the disrupted Hsd17b2, 70% showed embryonic lethality appearing at the age of embryonic d 11.5 onward. The embryonic lethality was associated with reduced placental size measured at embryonic d 17.5. The HSD17B2KO mice placentas presented with structural abnormalities in all three major layers: the decidua, spongiotrophoblast, and labyrinth. Most notable was the disruption of the spongiotrophoblast and labyrinthine layers, together with liquid-filled cysts in the junctional region and the basal layer. Treatments with an antiestrogen or progesterone did not rescue the embryonic lethality or the placenta defect in the homozygous mice. In hybrid background used, 24% of HSD17B2KO mice survived through the fetal period but were born growth retarded and displayed a phenotype in the brain with enlargement of ventricles, abnormal laminar organization, and increased cellular density in the cortex. Furthermore, the HSD17B2KO mice had unilateral renal degeneration, the affected kidney frequently appearing as a fluid-filled sac. Our results provide evidence for a role for HSD17B2 enzyme in the cellular organization of the mouse placenta.  相似文献   
5.
6.

Background

The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer.

Results

We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein.

Conclusions

Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.  相似文献   
7.
When studying how HIV‐1 Nef can promote packaging of the proinflammatory transmembrane protease TACE (tumor necrosis factor‐α converting enzyme) into extracellular vesicles (EVs) we have revealed a novel tyrosine kinase‐regulated unconventional protein secretion (UPS) pathway for TACE. When TACE was expressed without its trafficking cofactor iRhom allosteric Hck activation by Nef triggered translocation of TACE into EVs. This process was insensitive to blocking of classical secretion by inhibiting endoplasmic reticulum (ER) to Golgi transport, and involved a distinct form of TACE devoid of normal glycosylation and incompletely processed for prodomain removal. Like most other examples of UPS this process was Golgi reassembly stacking protein (GRASP)‐dependent but was not associated with ER stress. These data indicate that Hck‐activated UPS provides an alternative pathway for TACE secretion that can bypass iRhom‐dependent ER to Golgi transfer, and suggest that tyrosine phosphorylation might have a more general role in regulating UPS.   相似文献   
8.
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号