首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   17篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   1篇
  2019年   3篇
  2017年   5篇
  2016年   9篇
  2015年   12篇
  2014年   17篇
  2013年   18篇
  2012年   29篇
  2011年   24篇
  2010年   16篇
  2009年   11篇
  2008年   12篇
  2007年   11篇
  2006年   11篇
  2005年   5篇
  2004年   11篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  1993年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1957年   1篇
排序方式: 共有233条查询结果,搜索用时 31 毫秒
1.
2.
Species and community-level responses to warming are well documented, with plants and invertebrates known to alter their range, phenology or composition as temperature increases. The effects of warming on biotic interactions are less clearly understood, but can have consequences that cascade through ecological networks. Here, we used a natural soil temperature gradient of 5–35°C in the Hengill geothermal valley, Iceland, to investigate the effects of temperature on plant community composition and plant–invertebrate interactions. We quantified the level of invertebrate herbivory on the plant community across the temperature gradient and the interactive effects of temperature, plant phenology (i.e. development stage) and vegetation community composition on the probability of herbivory for three ubiquitous plant species, Cardamine pratensis, Cerastium fontanum and Viola palustris. We found that the percentage cover of graminoids and forbs increased, while the amount of litter decreased, with increasing soil temperature. Invertebrate herbivory also increased with soil temperature at the plant community level, but this was underpinned by different effects of temperature on herbivory for individual plant species, mediated by the seasonal development of plants and the composition of the surrounding vegetation. This illustrates the importance of considering the development stage of organisms in climate change research given the variable effects of temperature on susceptibility to herbivory at different ontogenetic stages.  相似文献   
3.
High-purity water (HPW) can be contaminated with pathogenic microorganisms, which may result in human infection. Current culture-based techniques for the detection of microorganisms from HPW can be slow and laborious. The aim of this study was to develop a rapid method for the quantitative detection and identification of pathogenic bacteria causing low-level contamination of HPW. A novel internally controlled multiplex real-time PCR diagnostics assay was designed and optimized to specifically detect and identify Pseudomonas aeruginosa and the Burkholderia genus. Sterile HPW, spiked with a bacterial load ranging from 10 to 103 cfu/100 ml, was filtered and the bacterial cells were removed from the filters by sonication. Total genomic DNA was then purified from these bacteria and subjected to testing with the developed novel multiplex real-time PCR diagnostics assay. The specific P. aeruginosa and Burkholderia genus assays have an analytical sensitivity of 3.5 genome equivalents (GE) and 3.7 GE, respectively. This analysis demonstrated that it was possible to detect a spiked bacterial load of 1.06 × 102 cfu/100 ml for P. aeruginosa and 2.66 × 102 cfu/100 ml for B. cepacia from a 200-ml filtered HPW sample. The rapid diagnostics method described can reliably detect, identify, and quantify low-level contamination of HPW with P. aeruginosa and the Burkholderia genus in <4 h. We propose that this rapid diagnostics method could be applied to the pharmaceutical and clinical sectors to assure the safety and quality of HPW, medical devices, and patient-care equipment.  相似文献   
4.
B. pseudomallei is a gram-negative bacterium that causes the tropical infection melioidosis. In northeast Thailand, mortality from melioidosis approaches 40%. As exemplified by the lipopolysaccharide-Toll-like receptor 4 interaction, innate immune responses to invading bacteria are precipitated by activation of host pathogen recognition receptors by pathogen associated molecular patterns. Human melioidosis is characterized by up-regulation of pathogen recognition receptors and pro-inflammatory cytokine release. In contrast to many gram-negative pathogens, however, the lipopolysaccharide of B. pseudomallei is considered only weakly inflammatory. We conducted a study in 300 healthy Thai subjects to investigate the ex vivo human blood response to various bacterial pathogen associated molecular patterns, including lipopolysaccharide from several bacteria, and to two heat-killed B. pseudomallei isolates. We measured cytokine levels after stimulation of fresh whole blood with a panel of stimuli. We found that age, sex, and white blood cell count modulate the innate immune response to B. pseudomallei. We further observed that, in comparison to other stimuli, the innate immune response to B. pseudomallei is most highly correlated with the response to lipopolysaccharide. The magnitude of cytokine responses induced by B. pseudomallei lipopolysaccharide was significantly greater than those induced by lipopolysaccharide from Escherichia coli and comparable to many responses induced by lipopolysaccharide from Salmonella minnesota despite lower amounts of lipid A in the B. pseudomallei lipopolysaccharide preparation. In human monocytes stimulated with B. pseudomallei, addition of polymyxin B or a TLR4/MD-2 neutralizing antibody inhibited the majority of TNF-α production. Challenging existing views, our data indicate that the innate immune response to B. pseudomallei in human blood is largely driven by lipopolysaccharide, and that the response to B. pseudomallei lipopolysaccharide in blood is greater than the response to other lipopolysaccharide expressing isolates. Our findings suggest that B. pseudomallei lipopolysaccharide may play a central role in stimulating the host response in melioidosis.  相似文献   
5.
A fundamental understanding of biofilm mechanical stability is critical in order to describe detachment and develop biofouling control strategies. It is thus important to characterise the elastic deformation and flow behaviour of the biofilm under different modes of applied force. In this study, the mechanical properties of a mature wastewater biofilm were investigated with methods including macroscale compression and microscale indentation using atomic force microscopy (AFM). The mature biofilm was found to be mechanically isotropic at the macroscale level as its mechanical properties did not depend on the scales and modes of loading. However, the biofilm showed a tendency for mechanical inhomogeneity at the microscale level as indentation progressed deeper into the matrix. Moreover, it was observed that the adhesion force had a significant influence on the elastic properties of the biofilm at the surface, subjected to microscale tensile loading. These results are expected to inform a damage-based model for biofilm detachment.  相似文献   
6.
In this study we examined the impact of systemic treatment with the long-acting brain penetrant β2-adrenoceptor agonist clenbuterol on NFκB activity and IκB expression in rat brain. Clenbuterol decreased NFκB activity (p65 DNA binding) in nuclear extracts prepared from rat cortex and hippocampus for up to 8 h following a single treatment. This was accompanied by increased expression of IκBα mRNA and protein. The temporal increase in IκB protein expression paralleled the suppression of NFκB activity, suggesting that IκBα mediates the suppression NFκB activity observed. These actions of clenbuterol were prevented by pre-treatment with the non-selective β-adrenoceptor antagonist propranolol, the β2-adrenoceptor antagonist ICI-118,551, but not the β1-adrenoceptor antagonist metoprolol, suggesting that the effects of clenbuterol on IκBα expression and NFκB activity are mediated specifically by the β2-adrenoceptor. In addition, the actions of clenbuterol were mimicked by systemic administration of another highly selective long-acting β2-adrenoceptor agonist formoterol. As neurodegenerative diseases are associated with inflammation we determined if clenbuterol could suppress NFκB activation that occurs in response to an inflammatory stimulus. In this regard we demonstrate that clenbuterol inhibited IκB phosphorylation and IκB degradation and inhibited NFκB activity in hippocampus and cortex of rats following a central injection of the inflammagen bacterial lipopolysaccharide (LPS). In tandem, clenbuterol blocked expression of the NFκB-inducible genes TNF-α and ICAM-1 following LPS administration. Our finding that clenbuterol and formoterol inhibit NFκB activity in the CNS further supports the idea that β2-adrenoceptors may be an attractive target for treating neuroinflammation and combating inflammation-related neurodegeneration.  相似文献   
7.
8.
Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy.  相似文献   
9.
Males and females share most of their genome and develop many of the same traits. However, each sex frequently has different optimal values for these shared traits, creating intralocus sexual conflict. This conflict has been observed in wild and laboratory populations of insects and affects important evolutionary processes such as sexual selection, the maintenance of genetic variation, and possibly even speciation. Given the broad impacts of intralocus conflict, accurately detecting and measuring it is important. A common way to detect intralocus sexual conflict is to calculate the intersexual genetic correlation for fitness, with negative values suggesting conflict. Here, we highlight a potential confounder of this measure—cytoplasmic incompatibility caused by the intracellular parasite Wolbachia. Infection with Wolbachia can generate negative intersexual genetic correlations for fitness in insects, suggestive of intralocus sexual conflict. This is because cytoplasmic incompatibility reduces the fitness of uninfected females mated to infected males, while uninfected males will not suffer reductions in fitness if they mate with infected females and may even be fitter than infected males. This can lead to strong negative intersexual genetic correlations for fitness, mimicking intralocus conflict. We illustrate this issue using simulations and then present Drosophila simulans data that show how reproductive incompatibilities caused by Wolbachia infection can generate signals of intralocus sexual conflict. Given that Wolbachia infection in insect populations is pervasive, but populations usually contain both infected and uninfected individuals providing scope for cytoplasmic incompatibility, this is an important consideration for sexual conflict research but one which, to date, has been largely underappreciated.  相似文献   
10.
The modelling and optimization of a process for the production of the medium chain length polyhydroxyalkanoate (mcl-PHA) by the bacterium Pseudomonas putida KT2440 when fed a synthetic fatty acid mixture (SFAM) was investigated. Four novel feeding strategies were developed and tested using a constructed model and the optimum one implemented in further experiments. This strategy yielded a cell dry weight of 70.6 g l−1 in 25 h containing 38% PHA using SFAM at 5 l scale. A phosphate starvation strategy was implemented to improve PHA content, and this yielded 94.1 g l−1 in 25 h containing 56% PHA using SFAM at 5 l scale. The process was successfully operated at 20 l resulting in a cell dry weight of 91.2 g l−1 containing 65% PHA at the end of a 25-h incubation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号