首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2741篇
  免费   258篇
  国内免费   3篇
  2022年   36篇
  2021年   44篇
  2020年   27篇
  2019年   25篇
  2018年   46篇
  2017年   42篇
  2016年   97篇
  2015年   115篇
  2014年   117篇
  2013年   143篇
  2012年   180篇
  2011年   163篇
  2010年   91篇
  2009年   81篇
  2008年   98篇
  2007年   99篇
  2006年   125篇
  2005年   94篇
  2004年   97篇
  2003年   98篇
  2002年   74篇
  2001年   61篇
  2000年   65篇
  1999年   68篇
  1998年   42篇
  1997年   32篇
  1996年   33篇
  1995年   39篇
  1994年   26篇
  1993年   27篇
  1992年   71篇
  1991年   65篇
  1990年   57篇
  1989年   51篇
  1988年   57篇
  1987年   50篇
  1986年   38篇
  1985年   30篇
  1984年   27篇
  1983年   18篇
  1982年   16篇
  1980年   15篇
  1979年   13篇
  1978年   21篇
  1976年   19篇
  1975年   21篇
  1974年   18篇
  1973年   17篇
  1972年   13篇
  1970年   15篇
排序方式: 共有3002条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The Bacillus subtilis nprE gene lacking its own promoter sequence was inserted in the lactococcal expression vector pMG36e. Upon introduction of the recombinant plasmid into Lactococcus lactis subsp. lactis strain MG1363, neutral protease activity could be visualized by the appearance of large clearing zones around colonies grown on milk agar plates. By measuring the activities of the neutral protease and the intracellular enzyme lactate dehydrogenase in culture supernatants and cell fractions, it was demonstrated that the neutral protease was actively secreted into the growth medium. This was corroborated by using the Western blot (immunoblot) technique, which showed the presence of the mature form of the neutral protease in the culture supernatant. On the basis of these results, it is concluded that the B. subtilis neutral protease gene was expressed in L. lactis and that the gene product was secreted into the growth medium and was apparently correctly processed to produced a biologically active protein. The secretion of this particular enzyme may be helpful in achieving accelerated cheese ripening.  相似文献   
5.
6.
7.
Alcaligenes denitrificans NTB-1, previously isolated on 4-chlorobenzoate, also utilized 4-bromo-, 4-iodo-, and 2,4-dichlorobenzoate but not 4-fluorobenzoate as a sole carbon and energy source. During growth, stoichiometric amounts of halide were released. Experiments with whole cells and cell extracts revealed that 4-bromo- and 4-iodobenzoate were metabolized like 4-chlorobenzoate, involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoate, which in turn was hydroxylated to 3,4-dihydroxybenzoate. The initial step in the metabolism of 2,4-dichlorobenzoate was catalyzed by a novel type of reaction for aerobic organisms, involving inducible reductive dechlorination to 4-chlorobenzoate. Under conditions of low and controlled oxygen concentrations, A. denitrificans NTB-1 converted all 4-halobenzoates and 2,4-dichlorobenzoate almost quantitatively to 4-hydroxybenzoate.  相似文献   
8.
9.
Polar solvent extracts of tobacco snuff under acidic conditions were mutagenic in Salmonella typhimurium. Using the Griess reagent test, nitrite ranging from approximately 1.8 to 5.4 mg/g of snuff was found in the polar fraction of extracts. After acid treatment, nitroso compounds in the amount corresponding to the nitrite concentration were detected. The mutagenic potency of the acid-treated extracts was consistent with the content of nitroso compounds generated. Formation of nitroso compounds and the mutagenic activity under acidic conditions was inhibited by ascorbic acid. The results indicate that a nitrosation process was involved in snuff extracts during acid treatment. Studies related to the source of nitrite in tobacco snuff demonstrated that snuff contained bacteria which were able to reduce nitrate to nitrite and that the amount of nitrite in snuff extracts could be further increased by incubation of the extracts with the bacteria. Since snuff contains a considerable amount of nitrate, it seems that reduction of nitrate in snuff to nitrite by bacteria, and nitrosation of certain constituents in snuff by nitrite under acidic conditions to form mutagenic nitroso compounds are possible mechanisms responsible for the acid-mediated mutagenicity of snuff extracts.  相似文献   
10.
Exposure of spinach (Spinacia oleracea L. cv. Monosa) to 0.25 μl l?1 H2S reduced the relative growth rate by 26, 47 and 60% at 15, 18 and 25°C, respectively. Shoot to root ratio decreased in plants fumigated at 18 and 25°C. Growth of spinach was not affected by a 2-week exposure to 0.10 or 0.25 μl l?1 SO2. Both H2S and SO2 fumigation increased the content of sulfhydryl compounds and sulfate. A 2-week exposure to 0.25 μl l?1 H2S resulted in an increase in sulfhydryl and sulfate content of 250 to 450% and 63 to 248% in the shoots, respectively, depending on growth temperature. Exposure to 0.15 and 0.30 μl l?1 H2S at 20°C for 2 weeks resulted in a 46% increase in sulfate content of the shoots at 0.30 μl l?1 and no detectable increase at 0.15 μl l?1 H2S; the sulfate content of the roots increased by 195 and 145% at 0.15 and 0.30 μl l?1 H2S, respectively. Fumigation with 0.25 μl l?1 SO2 at 20°C for 2 weeks resulted in an increase in sulfhydryl content and sulfate content in the shoots of 285% and 300 to 1100%. H2S fumigation during the 12 h light period or only during the dark period resulted in identical growth reduction and accumulation of sulfhydryl compounds; they were about 50 and 67% of those observed in continuously exposed plants. H2S- and SO2-exposed plants showed an increased transpiration rate, which was mainly caused by an increased dark-period transpiration. No effect of H2S and SO2 on the water uptake of the plants and the osmotic potential of the leaves was detected. Plants fumigated with 0.25 μl l?1 H2S for 2 weeks were smaller and differed morphologically from the control plants by slightly more abaxially curved leaf margins. Cross sections of the leaves showed smaller cells at the margins and smaller and fewer air spaces. The increased transpiration in the H2S-exposed plants is discussed in relation to the observed morphological changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号