首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   7篇
  2018年   1篇
  2017年   1篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2004年   2篇
  2003年   4篇
  2000年   2篇
  1998年   3篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1968年   1篇
  1958年   2篇
  1951年   1篇
  1941年   1篇
  1939年   1篇
  1936年   1篇
  1906年   1篇
  1899年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
2.
3.
The directional orientation of female presents in a captive group of long-tailed macaques (Macaca fascicularis) is markedly dependent upon the sex of the potential recipient. Females present in the ‘standard’ mode significantly more often than in the ‘sideways’ mode to males, with the opposite pattern prevailing to other females.  相似文献   
4.
A method is described for the sedimentation velocity analysis of solutions composed of macromolecular solutes of widely disparate size. In sedimentation velocity experiments, usually a single rotor speed is chosen for the entire run, and consequently, the range of observable sedimentation coefficients can be severely limited. This limitation can be removed if the speed is varied during the run, starting with a relatively low speed so that the largest particles can be easily observed. The speed is increased during the run until full speed is attained and the run continued at full speed until the smallest species of interest have cleared the solution. The method, called wide distribution analysis, is based on the method developed originally by Yphantis and co-workers (Proc. Natl. Acad. Sci. USA 78 (1981) 1431) and on the time derivative method of Stafford (Anal. Biochem. 203 (1992) 295), essentially eliminating both the time-independent and radially-independent noise thereby improving the precision, especially for interference optics. An algorithm for analysis of data from both absorbance and interference optics and experimental protocols compatible with the Beckman XL-I Analytical Ultracentrifuge are presented. With these protocols an extremely wide range of sedimentation coefficients from approximately 1.0 to 250000 S can be accommodated in a single multi-speed run.  相似文献   
5.
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.  相似文献   
6.
NAP-22, a myristoylated, anionic protein, is a major protein component of the detergent-insoluble fraction of neurons. After extraction from the membrane, it is readily soluble in water. NAP-22 will partition only into membranes with specific lipid compositions. The lipid specificity is not expected for a monomeric myristoylated protein. We have studied the self-association of NAP-22 in solution. Sedimentation velocity experiments indicated that the protein is largely associated. The low concentration limiting s value is approximately 1.3 S, indicating a highly asymmetric monomer. In contrast, a nonmyristoylated form of the protein shows no evidence of oligomerization by velocity sedimentation and has an s value corresponding to the smallest component of NAP-22, but without the presence of higher oligomers. Sedimentation equilibrium runs indicate that there is a rapidly reversible equilibrium between monomeric and oligomeric forms of the protein followed by a slower, more irreversible association into larger aggregates. In situ atomic force microscopy of the protein deposited on mica from freshly prepared dilute solution revealed dimers on the mica surface. The values of the association constants obtained from the sedimentation equilibrium data suggest that the weight concentration of the monomer exceeds that of the dimer below a total protein concentration of 0.04 mg/ml. Since the concentration of NAP-22 in the neurons of the developing brain is approximately 0.6 mg/ml, if the protein were in solution, it would be in oligomeric form and bind specifically to cholesterol-rich domains. We demonstrate, using fluorescence resonance energy transfer, that at low concentrations, NAP-22 labeled with Texas Red binds equally well to liposomes of phosphatidylcholine either with or without the addition of 40 mol% cholesterol. Thus, oligomerization of NAP-22 contributes to its lipid selectivity during membrane binding.  相似文献   
7.
Summary Free D-Ser, D-Asp and total D-amino acids were significantly higher (p < 0.05) in Alzheimer (AD) ventricular CSF than in normal CSF. There was no significant difference in the total L-amino acids between AD and normal CSF, but L-Gln and L-His were significantly higher (p < 0.05) in ADCSF. The higher concentrations of these D- and L-amino acids in AD ventricular CSF could reflect the degenerative process that occurs in Alzheimer's brain since ventricular CSF is the repository of amino acids from the brain.  相似文献   
8.
The structural domains of the Escherichia coli CheA protein resemble 'beads on a string', since the N-terminal phosphate-accepting (P) domain is joined to the CheY/CheB-binding (B) domain through a flexible linker, and the B domain is in turn joined to the C-terminal dimerization/catalytic/regulatory domains by a second intervening linker. Dimerization occurs primarily via interactions between two dimerization domains, which is required for CheA trans-autophosphorylation. In this study, sedimentation equilibrium was used to demonstrate significant subunit interactions at secondary sites in the two naturally occurring (full-length and short) forms of CheA (CheA(1-654) or CheA(L), and CheA(98-654) or CheA(S)) by contrasting the dimerization of CheA(L) and CheA(S) to CheA(T), an engineered form that lacked the P domain entirely. The estimated dimer dissociation constant (K(1,2)) for CheA(T) (3.1 microM) was weaker than K(1,2) for CheA(L) (0.49 microM), which was attributed to the P domain-catalytic domain interactions that were present in CheA(L) but not CheA(T). In contrast, CheA(S) dimerization was unexpectedly stronger (K(1,2) approximately 20 nM), which arose through interactions between two P domain remnants in the CheA(S) dimer. This conclusion was supported by the results of sedimentation equilibrium experiments conducted with P domains and P domain remnants expressed in the absence of the dimerization/catalytic/regulatory domains. The P domain remnant had a measurable tendency to self-associate; the full-length P domain did not. Hydrophobic forces probably drive this interaction, since hydrophobic amino acids buried in the intact P domain are solvent-exposed in CheA(S). Also, the nascent N-terminus of CheA(S) bound to the phosphatase (CheZ) more effectively, a conclusion based on the demonstrably greater ability of the P domain remnant to co-sediment CheZ, compared to the intact P domain.  相似文献   
9.
10.
MinE is an oligomeric protein that, in conjunction with other Min proteins, is required for the proper placement of the cell division site of Escherichia coli . We have examined the self-association properties of MinE by analytical ultracentrifugation and by studies of hetero-oligomer formation in non-denaturing polyacrylamide gels. The self-association properties of purified MinE predict that cytoplasmic MinE is likely to exist as a mixture of monomers and dimers. Consistent with this prediction, the C-terminal MinE22–88 fragment forms hetero-oligomers with MinE+ when the proteins are co-expressed. In contrast, the MinE36–88 fragment does not form MinE+/MinE36–88 hetero-oligomers, although MinE36–88 affects the topological specificity of septum placement as shown by its ability to induce minicell formation when co-expressed with MinE+ in wild-type cells. Therefore, hetero-oligomer formation is not necessary for the induction of minicelling by expression of MinE36–88 in wild-type cells. The interference with normal septal placement is ascribed to competition between MinE36–88 and the corresponding domain in the complete MinE protein for a component required for the topological specificity of septal placement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号