首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2014年   1篇
  2012年   1篇
  2009年   3篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
排序方式: 共有11条查询结果,搜索用时 109 毫秒
1.
2.
Cytochrome C (Cyt. C) is a mitochondrial protein inducing apoptosis when it is accumulated in the cytosol by a currently unknown mechanism, but regulated by the bcl-2 family of proteins. The linker Histone H1 is another basic protein with highly conservative structure, composition, and equal molecular weight, not changed during the evolution. An attempt was made to understand better the apoptotic processes by electroloading of leukemic cells, such as K562, HL-60, and SKW3, and human lymphocytes with positively charged proteins, such as Cyt. C, Histone H1, and methylated BSA albumin (mBSA). The triggering apoptotic processes followed by MTT test, FACS analysis, and DNA fragmentation after the electrotransfer of these proteins into the cells were observed. Histone H1 and mBSA induce the release of Cyt. C from rat liver mitochondria. Cytochrome C release was higher when mitochondria were in "high-energy" state. It is supposed that release of Cyt. C from mitochondria is due to the mechanical rupture of the outer mitochondrial membrane, rich in negatively charged groups, predominately due to cardiolipin. The reason for the morphological rupture of the outer mitochondial membrane could be the rigidification and segregation of the membrane and the destroyed membrane asymmetries of both monolayers in the presence of positively charged proteins at higher linear charges such as Histone H1. We suggested that Histone H1, at a given moment of activated signaling for apoptosis, could be not transported to the nucleus and could lead to the release of Cyt. C from the mitochondria in the cytoplasm. It is temping to speculate that Histone H1 has other physiological extranuclear functions involved in apoptosis.  相似文献   
3.
Pemphigus vulgaris (PV) is a life-threatening autoimmune disease characterized by oral mucosal erosions and epidermal blistering. The autoantibodies generated target the desmosomal cadherin desmoglein-3 (Dsg3). Previous studies demonstrate that upon PV IgG binding, Dsg3 is internalized and enters an endo-lysosomal pathway where it is degraded. To define the endocytic machinery involved in PV IgG-induced Dsg3 internalization, human keratinocytes were incubated with PV IgG, and various tools were used to perturb distinct endocytic pathways. The PV IgG.Dsg3 complex failed to colocalize with clathrin, and inhibitors of clathrin- and dynamin-dependent pathways had little or no effect on Dsg3 internalization. In contrast, cholesterol binding agents such as filipin and nystatin and the tyrosine kinase inhibitor genistein dramatically inhibited Dsg3 internalization. Furthermore, the Dsg3 cytoplasmic tail specified sensitivity to these inhibitors. Moreover, inhibition of Dsg3 endocytosis with genistein prevented disruption of desmosomes and loss of adhesion in the presence of PV IgG. Altogether, these results suggest that PV IgG-induced Dsg3 internalization is mediated through a clathrin- and dynamin-independent pathway and that Dsg3 endocytosis is tightly coupled to the pathogenic activity of PV IgG.  相似文献   
4.
The excision of distal digital glomus tumors has traditionally been performed directly over the involved nail bed. This can lead to nail deformities that are often unacceptable for the surgeon and the patient. The authors describe their experience with successful excision of digital glomus tumors using a lateral subperiosteal approach, which creates a dorsal flap. In 29 years, 19 patients were diagnosed with digital glomus tumors. All patients underwent excision using the lateral subperiosteal approach. The mean tumor size was 0.52 cm. The tumors were located on the pulp of the distal phalanx in two patients (10.5 percent) and subungually in 17 patients (89.5 percent). In all patients, preoperative clinical diagnosis was confirmed postoperatively with the biopsy result. Complications occurred in only two patients and included one paronychia and one temporary nail loss. The overall recurrence rate was 15.7 percent. All patients remained asymptomatic after surgery and regained full active and passive range of motion. There were no nail deformities by this approach. This technique represents a safe and effective approach to excising digital glomus tumors.  相似文献   
5.

Background

Data on survival with mucosal melanoma and on prognostic factors of are scarce. It is still unclear if the disease course allows for mucosal melanoma to be treated as primary cutaneous melanoma or if differences in overall survival patterns require adapted therapeutic approaches. Furthermore, this investigation is the first to present 10-year survival rates for mucosal melanomas of different anatomical localizations.

Methodology

116 cases from Sep 10 1984 until Feb 15 2011 retrieved from the Comprehensive Cancer Center and of the Central Register of the German Dermatologic Society databases in Tübingen were included in our analysis. We recorded anatomical location and tumor thickness, and estimated overall survival at 2, 5 and 10 years and the mean overall survival time. Survival times were analyzed with the Kaplan-Meier method. The log-rank test was used to compare survival times by localizations and by T-stages.

Principal Findings

We found a median overall survival time of 80.9 months, with an overall 2-year survival of 71.7%, 5-year survival of 55.8% and 10-year survival of 38.3%. The 10-year survival rates for patients with T1, T2, T3 or T4 stage tumors were 100.0%, 77.9%, 66.3% and 10.6% respectively. 10-year survival of patients with melanomas of the vulva was 64.5% in comparison to 22.3% of patients with non-vulva mucosal melanomas.

Conclusion

Survival times differed significantly between patients with melanomas of the vulva compared to the rest (p = 0.0006). It also depends on T-stage at the time of diagnosis (p<0.0001).  相似文献   
6.
7.
The Desmosome     
Desmosomes are intercellular junctions that tether intermediate filaments to the plasma membrane. Desmogleins and desmocollins, members of the cadherin superfamily, mediate adhesion at desmosomes. Cytoplasmic components of the desmosome associate with the desmosomal cadherin tails through a series of protein interactions, which serve to recruit intermediate filaments to sites of desmosome assembly. These desmosomal plaque components include plakoglobin and the plakophilins, members of the armadillo gene family. Linkage to the cytoskeleton is mediated by the intermediate filament binding protein, desmoplakin, which associates with both plakoglobin and plakophilins. Although desmosomes are critical for maintaining stable cell–cell adhesion, emerging evidence indicates that they are also dynamic structures that contribute to cellular processes beyond that of cell adhesion. This article outlines the structure and function of the major desmosomal proteins, and explores the contributions of this protein complex to tissue architecture and morphogenesis.The desmosome is an adhesive intercellular junction that is crucial to tissues that experience mechanical stress, such as the myocardium, bladder, gastrointestinal mucosa, and skin (Getsios et al. 2004b; Holthofer et al. 2007). The desmosome was first observed in the spinous layer of epidermis by the Italian pathologist Giulio Bizzozero (1846–1901). Bizzozero''s observations of these small dense nodules, subsequently named “nodes of Bizzozero,” led him to the insightful interpretation of these structures as adhesive cell–cell contact points. The term desmosome was later coined by Josef Schaffer in 1920 and is derived from the Greek words “desmo,” meaning bond or fastening, and “soma,” meaning body (Wells 2005; Calkins and Setzer 2007). The introduction of electron microscopy yielded a series of advances by Porter, Odland, and Kelly in the 1950s and 1960s, which revealed desmosome organization at the ultrastructural level. These studies and others indicated that the desmosome can be divided into three morphologically identifiable zones: the extracellular core region (desmoglea), the outer dense plaque (ODP), and the inner dense plaque (IDP) (Fig. 1A) (Kowalczyk et al. 1994; Schmidt et al. 1994; Green and Jones 1996; North et al. 1999; Garrod and Chidgey 2008).Open in a separate windowFigure 1.A model for the structure of desmosomes. (A) Electron micrograph of a desmosome. (B) Schematic of desmosomal proteins and relative distance from the plasma membrane (PM). The desmosomal cadherins, the desmogleins and desmocollins, extend into extracellular core and outer dense plaque (ODP) to establish contact and adhere to neighboring cells in a Ca2+-dependent manner. The cadherin cytoplasmic tails associate linker proteins, plakoglobin (PG), the plakophilins (PKP), and desmoplakin (DP). DP binds to keratin intermediate filaments (KIF) within the inner dense plaque (IDP), serving to tether the intermediate filaments to the plasma membrane. (Adapted with permission from Kottke et al. 2006.)In the mid 1970s, Skerrow and Matoltsy (Skerrow and Matoltsy 1974a; Skerrow and Matoltsy 1974b) advanced the field by isolating desmosomes using biochemical approaches (Bass-Zubek and Green 2007).These landmark studies provided a foundation for the Franke and Steinberg laboratories to characterize the transmembrane glycoproteins and cytoplasmic plaque proteins that linked the structure to the intermediate filament cytoskeleton, and to develop immunological tools for localizing specific components (Franke et al. 1981; Kapprell et al. 1985; Steinberg et al. 1987). Collectively, these and other studies shaped our current view of how desmosomal components are organized.The transmembrane glycoproteins, termed desmogleins and desmocollins (Garrod and Chidgey 2008), represent separate subfamilies of the cadherin superfamily of calcium dependent adhesion molecules. The extracellular domains of the desmogleins and desmocollins mediate adhesion, whereas the cytoplasmic tails of these cadherins associate with the desmosomal plaque proteins. The outer dense plaque consists of the cytoplasmic tails of the desmosomal cadherins, which bind to members of the armadillo and plakin family of linker proteins (Kowalczyk et al. 1994; Getsios et al. 2004b; Garrod and Chidgey 2008). Plakoglobin, a member of the armadillo family, binds directly to the cytoplasmic tails of both the desmogleins and the desmocollins (Wahl et al. 1996; Witcher et al. 1996). Desmoplakin, a member of the plakin family, interacts with both plakoglobin and another subgroup of armadillo family proteins, the plakophilins (Cowin and Burke 1996). Finally, the interaction between desmoplakin and the keratin filaments forms the inner dense plaque, tethering the cytoskeletal network to the adhesion complex (Fig. 1B) (Kowalczyk et al. 1994; Getsios et al. 2004b; Garrod and Chidgey 2008).The following sections of this article describe the structural and functional characteristics of the major desmosomal proteins. In addition, we discuss differences in tissue expression patterns of desmosomal proteins and the role of desmosomes in human disease. A comprehensive review of additional proteins found to regulate or associate with desmosomes is provided elsewhere (Holthofer et al. 2007) and discussion of desmosome dynamics is provided in Green et al. 2009.  相似文献   
8.
Erythromelalgia (also termed erythermalgia) is a neuropathic pain syndrome, characterized by severe burning pain combined with redness in the extremities, triggered by mild warmth. The inherited form of erythromelalgia (IEM) has recently been linked to mutations in voltage-gated sodium channel Nav1.7, which is expressed in peripheral nociceptors. Here, we used whole-cell voltage-clamp recordings in HEK293 cells to characterize the IEM mutation L823R, which introduces an additional positive charge into the S4 voltage sensor of domain II. The L823R mutation produces a ∼15 mV hyperpolarizing shift in the midpoint of activation and also affects the activation slope factor. Closing of the channel from the open state (deactivation) is slowed, increasing the likelihood of the channel remaining in the open state. The L823R mutation induces a ∼10 mV hyperpolarizing shift in fast-inactivation. L823R is the only naturally-occurring IEM mutation studied thus far to shift fast-inactivation to more negative potentials. We conclude that introduction of an additional charge into the S4 segment of domain II of Nav1.7 leads to a pronounced hyperpolarizing shift of activation, a change that is expected to increase nociceptor excitability despite the hyperpolarizing shift in fast-inactivation, which is unique among the IEM mutations.  相似文献   
9.
The monoclonal antibody SC3 was raised against the NK leukaemia cell line YTindi. It detected a 98-kDa surface antigen with weak expression on a restricted number of leukaemia cell lines under reducing conditions. SC3 mAb labelled 5-10% of normal peripheral blood lymphocytes corresponding almost exclusively to B lymphocytes, and 60-70% of tonsillar B cells. It did not react with erythrocytes, platelets or monocytes whereas it stained granulocytes. The aim of the present study was to examine the expression and functional effects of SC3 mAb reactive epitope on normal and malignant B cells. Most SC3+ B cells from healthy donors were CD23+, some co-expressed CD5 and CD27 and a few were CD38+. SC3 epitope was expressed exclusively by B-lineage malignant proliferations, including B-lineage ALL. Practically, all B-CLL studied expressed SC3 mAb reactive epitope although with variable intensity, while MCL and PLL were negative. Other low grade and high grade B-NHL were variably stained. SC3 mAb alone triggered the proliferation of CD2-depleted PBL and significantly increased the proliferation induced by suboptimal concentrations of LPS. This effect was much weaker with B-CLL cells but was increased after cross-linking with an anti-IgM antibody. The restricted expression pattern combined with molecular weight and functional data indicate that SC3 mAb may detect a novel B-cell antigen mostly expressed by early and naive B cells. Although its expression in B-cell malignancies was not limited to a single differentiation stage, it might confer specific functional characteristics to the positive malignant cells.  相似文献   
10.
BackgroundGhana is endemic for some neglected tropical diseases (NTDs) including schistosomiasis, onchocerciasis and lymphatic filariasis. The major intervention for these diseases is mass drug administration of a few repeatedly recycled drugs which is a cause for major concern due to reduced efficacy of the drugs and the emergence of drug resistance. Evidently, new treatments are needed urgently. Medicinal plants, on the other hand, have a reputable history as important sources of potent therapeutic agents in the treatment of various diseases among African populations, Ghana inclusively, and provide very useful starting points for the discovery of much-needed new or alternative drugs.Methodology/Principal findingsIn this study, extracts of fifteen traditional medicines used for treating various NTDs in local communities were screened in vitro for efficacy against schistosomiasis, onchocerciasis and African trypanosomiasis. Two extracts, NTD-B4-DCM and NTD-B7-DCM, prepared from traditional medicines used to treat schistosomiasis, displayed the highest activity (IC50 = 30.5 μg/mL and 30.8 μg/mL, respectively) against Schistosoma mansoni adult worms. NTD-B2-DCM, also obtained from an antischistosomal remedy, was the most active against female and male adult Onchocera ochengi worms (IC50 = 76.2 μg/mL and 76.7 μg/mL, respectively). Antitrypanosomal assay of the extracts against Trypanosoma brucei brucei gave the most promising results (IC50 = 5.63 μg/mL to 18.71 μg/mL). Incidentally, NTD-B4-DCM and NTD-B2-DCM, also exhibited the greatest antitrypanosomal activities (IC50 = 5.63 μg/mL and 7.12 μg/mL, respectively). Following the favourable outcome of the antitrypanosomal screening, this assay was selected for bioactivity-guided fractionation. NTD-B4-DCM, the most active extract, was fractionated and subsequent isolation of bioactive constituents led to an eupatoriochromene-rich oil (42.6%) which was 1.3-fold (IC50 <0.0977 μg/mL) more active than the standard antitrypanosomal drug, diminazene aceturate (IC50 = 0.13 μg/mL).Conclusion/SignificanceThese findings justify the use of traditional medicines and demonstrate their prospects towards NTDs drug discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号