首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   7篇
  2024年   2篇
  2023年   4篇
  2022年   15篇
  2021年   43篇
  2020年   12篇
  2019年   24篇
  2018年   26篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   10篇
  2013年   26篇
  2012年   13篇
  2011年   18篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   11篇
  2006年   9篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   4篇
  1999年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1982年   1篇
  1972年   1篇
排序方式: 共有296条查询结果,搜索用时 15 毫秒
1.
Synopsis Bagrids in Bahr Shebeen Nilotic canal depend mainly on fish, insects and shrimp as well as fish embryos for food and their stomachs included runoff materials (e.g. plant foliage, glass, black crystals, coloured gravel). B. bayad maximised its efficiency of catching prey catfish by face to face attack to avoid damage by the prey's pectoral and dorsal spines. In the size classes of 10 to 30 cm standard length, B. bayad and B. docmac show diet overlap and interact with each other especially with respect to tilapias as prey. After this length, B. docmac, aided by its relatively larger mouth, shifted to larger size of tilapias to coexist with B. bayad.  相似文献   
2.
The effects of reducing glutathione peroxidase activity in the lung by changing dietary selenium intake has been investigated. In animals that were exposed to room air, selenium effects were confined to glutathione peroxidase activity, whereas under conditions of oxidant stress (ozone) the decrease in glutathione peroxidase activity prevented the stimulation of the pentose phosphate cycle (assayed by measuring glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities) which has been reported to increase in response to oxidant stress. The suppression of glutathione peroxidase activity was found to depend on dietary selenium concentration. The physiological significance of this observation may be related to the process of injury and repair in the lung.  相似文献   
3.
The effects of the organophosphorus anticholinesterase paraoxon on the binding of radioactive ligands to the M3 subtype of the muscarinic receptor and receptor-coupled synthesis of second messengers in intact rat submaxillary gland (SMG) cells were investigated. The binding of [3H]quinuclidinyl benzilate ([3H]QNB) was most sensitive to atropine and the M3-specific antagonist 4-DAMP followed by pirenzepine and least sensitive to the cardioselective M2 antagonist AFDX116. This, and the binding characteristics of [3H]4-DAMP, confirmed that the muscarinic receptors in this preparation are of the M3 subtype. Activation of these muscarinic receptors by carbamylcholine (CBC) produced both stimulation of phosphoinositide (PI) hydrolysis and inhibition of cAMP synthesis, suggesting that this receptor subtype couples to both effector systems. Paraoxon (100 μM) reduced Bmax of [3H]4-DAMP binding from 27 ± 4 to 13 ± 3 fmol/mg protein with nonsignificant change in affinity, suggesting noncompetitive inhibition of binding by paraoxon. Like the agonist CBC, paraoxon inhibited the forskolininduced cAMP formation in SMG cells with an EC50 of 200 nM, but paraoxon was > 500 fold more potent than CBC. However, while the inhibition by CBC was counteracted by 2 μM atropine, that by paraoxon was unaffected by up to 100 μM atropine. It suggested that this effect of paraoxon was not via binding to the muscarinic receptor. Paraoxon did not affect β-adrenoreceptor function in the preparation, since it did not affect the 10 μM isoproterenol-induced cAMP synthesis, which was inhibited totally by 10 μM propranolol and partially by CBC. Paraoxon had a small but significant effect on CBC-stimulated PI metabolism in the SMG cells. It is suggested that paraoxon binds to two different sites in these SMG cells. One is an allosteric site on the M3 muscarinic receptor which affects ligand binding and may modulate receptor function. The other site may be on the Gi proteinadenylyl cyclase system, and produces CBC-like action, that is, inhibition of the forskolin-stimulated [3H]cAMP synthesis, and is unaffected by atropine inhibition of the muscarinic receptor. This adds to the complexity of paraoxon actions on muscarinic receptors and their effector systems.  相似文献   
4.
Automated assays for catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase are presented. The assay for catalase is based on the peroxidatic activity of the enzyme. The glutathione peroxidase and reductase assays measure the consumption of NADPH following the reduction of t-butyl hydroperoxide and oxidized glutathione, respectively. The assay for superoxide dismutase is based on the reduction of cytochrome c. All assays utilize the Cobas FARA clinical automated analyzer and provide considerable time savings over the manual assays.  相似文献   
5.
6.
Journal of Physiology and Biochemistry - The increase in osteopontin (OPN) levels after stroke induces neural protection by activating Akt signaling and inhibiting GS3Kβ, iNOS, and NF-κB....  相似文献   
7.
Fetuses exposed to an inflammatory environment are predisposed to long‐term adverse neurological outcomes. However, the mechanism by which intrauterine inflammation (IUI) is responsible for abnormal fetal brain development is not fully understood. The mechanistic target of rapamycin (mTOR) signaling pathway is closely associated with fetal brain development. We hypothesized that mTOR signaling might be involved in fetal brain injury and malformation when fetuses are exposed to the IUI environment. A well‐established IUI model was utilized by intrauterine injection of lipopolysaccharide (LPS) to explore the effect of IUI on mTOR signaling in mouse fetal brains. We found that microglia activation in LPS fetal brains was increased, as demonstrated by elevated Iba‐1 protein level and immunofluorescence density. LPS fetal brains also showed reduced neuronal cell counts, decreased cell proliferation demonstrated by low Ki67‐positive density, and elevated neuron apoptosis evidenced by high expression of cleaved Caspase 3. Furthermore, we found that mTOR signaling in LPS fetal brains was elevated at 2 hr after LPS treatment, declined at 6 hr and showed overall inhibition at 24 hr. In summary, our study revealed that LPS‐induced IUI leads to increased activation of microglia cells, neuronal damage, and dynamic alterations in mTOR signaling in the mouse fetal brain. Our findings indicate that abnormal changes in mTOR signaling may underlie the development of future neurological complications in offspring exposed to prenatal IUI.  相似文献   
8.
9.
Pseudomonas aeruginosa (P. aeruginosa) is a highly pathogenic bacteria involved in numerous diseases among which, are urinary tract infections (UTIs). The pyocyanin secreted as a virulence factor by this bacterium has many beneficial applications but its high cost remains an obstacle for its widespread use. In this study, a total of fifty urine isolates were identified as P. aeruginosa. All strains produced pyocyanin pigment with a range of 1.3–31 µg/ml. The highest producer clinical strain P21 and the standard strain PA14 were used in optimization of pyocyanin production. Among tested media, king’s A fluid medium resulted in the highest yield of pyocyanin pigment followed by nutrient broth. Growth at 37 °C was superior in pyocyanin production than growth at 30 °C. Both shaking and longer incubation periods (3–4 days) improved pyocyanin production. The pyocyanin yield was indifferent upon growth of P21 at both pH 7 and pH 8. In conclusion, the optimum conditions for pyocyanin production are to use King’s A fluid medium of pH 7 and incubate the inoculated medium at 37 °C with shaking at 200 rpm for a period of three to four days.  相似文献   
10.
Insulin resistance(IR)is associated with several metabolic disorders,including type 2 diabetes(T2D).The development of IR in insulin target tissues involves genetic and acquired factors.Persons at genetic risk for T2D tend to develop IR several years before glucose intolerance.Several rodent models for both IR and T2D are being used to study the disease pathogenesis;however,these models cannot recapitulate all the aspects of this complex disorder as seen in each individual.Human pluripotent stem cells(hPSCs)can overcome the hurdles faced with the classical mouse models for studying IR.Human induced pluripotent stem cells(hiPSCs)can be generated from the somatic cells of the patients without the need to destroy a human embryo.Therefore,patient-specific hiPSCs can generate cells genetically identical to IR individuals,which can help in distinguishing between genetic and acquired defects in insulin sensitivity.Combining the technologies of genome editing and hiPSCs may provide important information about the genetic factors underlying the development of different forms of IR.Further studies are required to fill the gaps in understanding the pathogenesis of IR and diabetes.In this review,we summarize the factors involved in the development of IR in the insulin-target tissues leading to diabetes.Also,we highlight the use of hPSCs to understand the mechanisms underlying the development of IR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号