首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes   总被引:1,自引:0,他引:1  
The first female meiotic division (meiosis I, MI) is uniquely prone to chromosome segregation errors through non-disjunction, resulting in trisomies and early pregnancy loss. Here, we show a fundamental difference in the control of mammalian meiosis that may underlie such susceptibility. It involves a reversal in the well-established timing of activation of the anaphase-promoting complex (APC) by its co-activators cdc20 and cdh1. APC(cdh1) was active first, during prometaphase I, and was needed in order to allow homologue congression, as loss of cdh1 speeded up MI, leading to premature chromosome segregation and a non-disjunction phenotype. APC(cdh1) targeted cdc20 for degradation, but did not target securin or cyclin B1. These were degraded later in MI through APC(cdc20), making cdc20 re-synthesis essential for successful meiotic progression. The switch from APC(cdh1) to APC(cdc20) activity was controlled by increasing CDK1 and cdh1 loss. These findings demonstrate a fundamentally different mechanism of control for the first meiotic division in mammalian oocytes that is not observed in meioses of other species.  相似文献   
2.
Inoculation with the rhizosphere bacterium Azospirillum brasilense NH, originally isolated from salt-affected soil in northern Algeria, greatly enhanced growth of durum wheat (Triticum durum var. waha) under saline soil conditions. Important plant parameters like the rate of germination, stem height, spike length, dry weight of roots and shoots, chlorophyll a and b content, proline and total sugar contents, 1000-seed weight, seed number per spike, and weight of seeds per spike were measured. At salt stress conditions (160 and 200 mM NaCl) A. brasilense NH restored almost completely vegetative growth and seed production. The combination with extracts of the marine alga Ulva lactuca resulted in even more improved salt tolerance of durum wheat. Proline and total sugar accumulation, a sign of physiological plant stress under inhibitory salt conditions, was reduced in plants inoculated with A. brasilense NH with and without addition of algal extracts. Inoculation with the salt-sensitive A. brasilense strain Sp7 could not restore salt-affected plant growth at 200 mM NaCl. Furthermore, it could be demonstrated by fluorescence in situ hybridization and confocal laser scanning microscopy that A. brasilense NH is able to colonize roots of durum wheat endophytically under salt-stressed conditions. Thus, the salt-tolerant rhizobacterium A. brasilense NH could effectively provide alone or in combination with extracts of U. lactuca a promising solution to overcome salt inhibition which is a major threat hindering productive wheat cultivation in arid saline soils.  相似文献   
3.
4.
Thymic selection shapes the T cell repertoire to ensure maximal antigenic coverage against pathogens while preventing autoimmunity. Recognition of self-peptides in the context of peptide-MHC complexes by the TCR is central to this process, which remains partially understood at the molecular level. In this study we provide genetic evidence that the Nck adapter proteins are essential for thymic selection. In vivo Nck deletion resulted in a reduction of the thymic cellularity, defective positive selection of low-avidity T cells, and impaired deletion of thymocytes engaged by low-potency stimuli. Nck-deficient thymocytes were characterized by reduced ERK activation, particularly pronounced in mature single positive thymocytes. Taken together, our findings identify a crucial role for the Nck adapters in enhancing TCR signal strength, thereby fine-tuning the threshold of thymocyte selection and shaping the preimmune T cell repertoire.  相似文献   
5.
Mammalian eggs remain arrested at metaphase of the second meiotic division (metII) for an indeterminate time before fertilization. During this period, which can last several hours, the continued attachment of sister chromatids is thought to be achieved by inhibition of the protease separase. Separase is known to be inhibited by binding either securin or Maturation (M-Phase)-Promoting Factor, a heterodimer of CDK1/cyclin B1. However, the relative contribution of securin and CDK/cyclin B1 to sister chromatid attachment during metII arrest has not been assessed. Although there are conditions in which either CDK1/cyclinB1 activity or securin can prevent sister chromatid disjunction, principally by overexpression of non-degradable cyclin B1 or securin, we find here that separase activity is primarily regulated by securin and not CDK1/cyclin B1. Thus the CDK1 inhibitor roscovitine and an antibody we designed to block the interaction of CDK1/cyclin B1 with separase, both failed to induce sister disjunction. In contrast, securin morpholino knockdown specifically induced loss of sister attachment, that could be restored by securin cRNA rescue. During metII arrest separase appears primarily regulated by securin binding, not CDK1/cyclin B1.  相似文献   
6.
Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号