首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   2篇
  国内免费   1篇
  2022年   6篇
  2021年   6篇
  2020年   3篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   11篇
  2012年   13篇
  2011年   9篇
  2010年   5篇
  2009年   1篇
  2008年   3篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2000年   1篇
  1995年   1篇
  1988年   1篇
排序方式: 共有98条查询结果,搜索用时 363 毫秒
1.
Experimental data suggest that the B-cell antigen CD20 may play a significant role in the pathogenesis of many diseases including glomerular diseases. These and other findings underpin the central concept of B-cell-depleting therapies that target CD20 antigen as treatments for lupus nephritis, idiopathic membranous nephropathy, focal segmental glomerulosclerosis, cryglobulinemic glomerulonephritis, antibody mediated renal allograft rejection and recurrent glomerulonephritis in renal allograft. Use of rituximab as a B-cell depleting therapy has been associated with clinical improvement and has emerged as a possible adjunct or alternative treatment option in this field of nephrology.  相似文献   
2.
Water is essential for the growth period of crops; however, water unavailability badly affects the growth and physiological attributes of crops, which considerably reduced the yield and yield components in crops. Therefore, a pot experiment was conducted to investigate the effect of foliar phosphorus (P) on morphological, gas exchange, biochemical traits, and phosphorus use efficiency (PUE) of maize (Zea mays L.) hybrids grown under normal as well as water deficit situations at the Department of Agronomy, University of Agriculture Faisalabad, Pakistan in 2014. Two different treatments (control and P @ 8 kg ha−1 ) and four hybrids (Hycorn, 31P41, 65625, and 32B33) of maize were tested by using a randomized complete block design (RCBD) with three replications. Results showed that the water stress caused a remarkable decline in total soluble protein (9.7%), photosynthetic rate (9.4%) and transpiration rate (13.4%), stomatal conductance (10.2%), and internal CO2 rate (20.4%) comparative to well-watered control. An increase of 37.1%, 36.8%, and 24.5% were recorded for proline, total soluble sugar, and total free amino acid, respectively. However, foliar P application minimized the negative impact of drought by improving plant growth, physio-biochemical attributes, and PUE in maize plants under water stress conditions. Among the hybrids tested, the hybrid 6525 performed better both under stress and non-stress conditions. These outcomes confirmed that the exogenous application of P improved drought stress tolerance by modulating growth, physio-biochemical attributes, and PUE of maize hybrids.  相似文献   
3.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline and enhancement of oxidative loads in the brain. Flavonoids have been considered to exert human health benefits by anti-oxidant and anti-inflammatory properties. The present study is aimed to elucidate the neuroprotective effect of catechin hydrate (CH), a natural flavanoid with potential antioxidant and anti-inflammatory properties, on intracerebroventricular streptozotocin (ICV-STZ) induced neuronal loss and memory impairment. To test this hypothesis, male Wistar rats were pretreated with CH (10 and 20 mg/kg bwt) orally once daily for 21 days and then bilaterally injected with ICV-STZ (3 mg/kg bwt), while sham group rats receive the same volume of vehicle. After 2 weeks of ICV-STZ infusion, rats were tested for cognitive performance using Morris water maze (MWM) test and then sacrifice for biochemical and histopathological assays. CH was found to be successful in upregulating the antioxidant status and prevented the memory loss. The expression of choline acetyl transferase (ChAT) was decreased in ICV-STZ group and CH pretreatment increases the expression of ChAT. Moreover, inflammatory mediators like TNF-α, IL-1β levels and expression of iNOS were significantly attenuated by CH pretreatment. The study suggests that CH is effective in preventing memory loss, ameliorating the oxidative stress and might be beneficial for the treatment of sporadic dementia of Alzheimer’s type (SDAT).  相似文献   
4.
Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases.  相似文献   
5.

Purpose

To study spontaneous K-complex (KC) densities during slow-wave sleep. The secondary objective was to estimate intra-non-rapid eye movement (NREM) sleep differences in KC density.

Materials and Methods

It is a retrospective study using EEG data included in polysomnographic records from the archive at the sleep research laboratory of the Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, India. The EEG records of 4459 minutes were used. The study presents a manual identification investigation of KCs in 17 healthy young adult male volunteers (age = 23.82±3.40 years and BMI = 23.42±4.18 kg/m2).

Results

N3 had a higher KC density than N2 (Z = -2.485, p = 0.013) for all of the probes taken together. Four EEG probes had a higher probe-specific KC density during N3. The inter-probe KC density differed significantly during N2 (χ2 = 67.91, p < .001), N3 (χ2 = 70.62, p < .001) and NREM (χ2 = 68.50, p < .001). The percent distribution of KC decreased uniformly with sleep cycles.

Conclusion

The inter-probe differences during N3 establish the fronto-central dominance of the KC density regardless of sleep stage. This finding supports one local theory of KC generation. The significantly higher KC density during N3 may imply that the neuro-anatomical origin of slow-wave activity and KC is the same. This temporal alignment with slow-wave activity supports the sleep-promoting function of the KC.  相似文献   
6.
Calligonolides A (1) and B (2), two new butanolides, and a new steroidal ester, 3, have been isolated from the whole plant of Calligonum polygonoides, together with four known compounds, tetracosan-4-olide, beta-sitosterol and its glucoside, and ursolic acid. Their structures were elucidated by spectroscopic and mass-spectrometric studies. Compounds 1-3 showed moderate inhibitory potential against lipoxygenase from soybean.  相似文献   
7.
In this study, two different semen cryopreservation protocols were compared to freeze goat semen. The ejaculates (n = 12) were collected by using electro-ejaculator from six mature bucks (two ejaculates per each buck). Each ejaculate was divided into two groups as Protocol 1 (P1) and Protocol 2 (P2). In P1, semen was diluted directly in an extender containing 15% egg yolk, 300 mM Tris, 28 mM glucose, 95 mM citric acid 5% glycerol to a concentration of 200 × 106 sperm/mL. In P2, after the removal of seminal plasma by centrifugation, the semen sample was diluted with the first portion of milk extender consist of 100 mg/mL skimmed milk powder and 27.75 mM glucose (without glycerol) to a concentration of 400 × 106 sperm/mL. The second portion of the milk extender containing 14% glycerol was added to semen gradually in order to achieve sperm concentration 200 × 106 sperm/mL and 7% glycerol level in the final volume. Extended semen was loaded in 0.25 mL straws, held for 2 h at 4 °C, frozen in nitrogen vapor and stored in liquid nitrogen. Post-thaw motility and live sperm rate (mean ± SEM) were significantly lower (P < 0.05) in P1 as compared to P2 (47.50 ± 1.23% vs. 55.63 ± 1.72%; 80.04 ± 1.29% vs. 84.04 ± 1.08%, respectively). However, live intact, total intact, abnormal, reacted acrosome and DNA damaged sperm rates were similar (P > 0.05) in both protocols. It was concluded that both protocols used in this study provided reasonable post-thaw parameters; however, P2 yielded better motility and live sperm rate compared to P1.  相似文献   
8.
Wheat germ lipase is a cereal lipase which is a monomeric protein. In the present study we sought to structurally characterize this protein along with equilibrium unfolding in solution. Conformational changes occurring in the protein with varying pH, were monitored by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy, binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS) and dynamic light scattering (DLS). Our study showed that acid denaturation of lipase lead to characterization of multiple monomeric intermediates. Native protein at pH 7.0 showed far-UV spectrum indicating mixed structure with both alpha and beta-type of characteristics. Activity of lipase was found to fall on either sides of pH 7.0–8.0. Acid-unfolded state was characterized at pH 4.0 with residual secondary structure, disrupted tertiary spectrum and red-shifted fluorescence spectrum with decreased intensity. Further decrease in pH lead to formation of secondary structure and acid-induced molten globule state was found to be stabilized at pH 1.4, with exposed tryptophan residues and hydrophobic patches. Notably, interesting finding of this study was characterization of acid-induced state at pH 0.8 with higher secondary structure content than native lipase, regain in tertiary spectrum and induction of compact conformation. Although enzymatically inactive, acid-induced state at pH 0.8 was found to be structurally more stable than native lipase, as shown by chemical and thermal denaturation profiles.  相似文献   
9.
Human serum albumin (HSA), being the most abundant carrier protein in blood and a modern day clinical tool for drug delivery, attracts high attention among biologists. Hence, its unfolding/refolding strategies and exogenous/endogenous ligand binding preference are of immense use in therapeutics and clinical biochemistry. Among its fellow proteins albumin is known to carry almost every small molecule. Thus, it is a potential contender for being a molecular cargo/or nanovehicle for clinical, biophysical and industrial purposes. Nonetheless, its structure and function are largely regulated by various chemical and physical factors to accommodate HSA to its functional purpose. This multifunctional protein also possesses enzymatic properties which may be used to convert prodrugs to active therapeutics. This review aims to highlight current overview on the binding strategies of protein to various ligands that may be expected to lead to significant clinical applications. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
10.
Phytoextraction has received increasing attention as a promising, cost-effective alternative to conventional engineering-based remediation methods for metal contaminated soils. In order to enhance the phytoremediative ability of green plants chelating agents are commonly used. Our study aims to evaluate whether, citric acid (CA) or elemental sulfur (S) should be used as an alternative to the ethylene diamine tetraacetic acid (EDTA)for chemically enhanced phytoextraction. Results showed that EDTA was more efficient than CA and S in solubilizing lead (Pb) from the soil. The application of EDTA and S increased the shoot biomass of wheat. However, application of CA at higher rates (30 mmol kg(-1)) resulted in significantly lower wheat biomass. Photosynthesis and transpiration rates increased with EDTA and S application, whereas these parameters were decreased with the application of CA. Elemental sulfur was ineffective for enhancing the concentration of Pb in wheat shoots. Although CA did not increase the Pb solubility measured at the end of experiment, however, it was more effective than EDTA in enhancing the concentration of Pb in the shoots of Triticum aestivum L. It was assumed that increase in Mn concentration to toxic levels in soil with CA addition might have resulted in unusual Pb concentration in wheat plants. The results of the present study suggest that under the conditions used in this experiment, CA at the highest dose was the best amendment for enhanced phytoextraction of Pb using wheat compared to either EDTA or S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号