首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1217篇
  免费   70篇
  2022年   15篇
  2021年   21篇
  2020年   11篇
  2019年   23篇
  2018年   20篇
  2017年   21篇
  2016年   29篇
  2015年   44篇
  2014年   43篇
  2013年   93篇
  2012年   119篇
  2011年   112篇
  2010年   69篇
  2009年   43篇
  2008年   81篇
  2007年   91篇
  2006年   84篇
  2005年   70篇
  2004年   47篇
  2003年   54篇
  2002年   59篇
  2001年   19篇
  2000年   10篇
  1999年   10篇
  1998年   10篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   11篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   2篇
  1989年   5篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1963年   1篇
  1962年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有1287条查询结果,搜索用时 186 毫秒
1.
2.
3.
4.
A seven-amino-acid cleavage site specific for tobacco etch virus (TEV) protease was introduced into SecA at two separate positions after amino acids 195 and 252. Chromosomal wild-type secA was replaced by these secA constructs. Simultaneous expression of TEV protease led to cleavage of both SecA derivatives. In the functional SecA dimer, proteolysis directly indicated surface exposure of the TEV protease cleavage sites. Cleavage of SecA near residue 195 generated an unstable proteolysis product and a secretion defect, suggesting that this approach could be used to inactivate essential proteins in vivo.  相似文献   
5.
Escherichia coli can synthesize trehalose in response to osmotic stress and is able to utilize trehalose as a carbon source. The pathway of trehalose utilization is different at low and high osmolarity. At high osmolarity, a periplasmic trehalase (TreA) is induced that hydrolyzes trehalose in the periplasm to glucose. Glucose is then taken up by the phosphotransferase system. At low osmolarity, trehalose is taken up by a trehalose-specific enzyme II of the phosphotransferase system as trehalose-6-phosphate and then is hydrolyzed to glucose and glucose-6-phosphate. Here we report a novel cytoplasmic trehalase that hydrolyzes trehalose to glucose. treF, the gene encoding this enzyme, was cloned under ara promoter control. The enzyme (TreF) was purified from extracts of an overexpressing strain and characterized biochemically. It is specific for trehalose exhibiting a Km of 1.9 mM and a Vmax of 54 micromol of trehalose hydrolyzed per min per mg of protein. The enzyme is monomeric, exhibits a broad pH optimum at 6.0, and shows no metal dependency. TreF has a molecular weight of 63,703 (549 amino acids) and is highly homologous to TreA. The nonidentical amino acids of TreF are more polar and more acidic than those of TreA. The expression of treF as studied by the expression of a chromosomal treF-lacZ fusion is weakly induced by high osmolarity of the medium and is partially dependent on RpoS, the stationary-phase sigma factor. Mutants producing 17-fold more TreF than does the wild type were isolated.  相似文献   
6.
Four types of differently phosphorylated hylakoids isolated from field grown spinach ( Spinacia oleracea L.) were tested for the sensitivity of photosystem II (PSII) to photoinactivation. Phosphorylation of light-harvesting II complexes (LHCII) protected PSII electron transfer from photoinhibitory damage, while the phosphorylation of the PSII core polypeptides slightly accelerated the decline of electron transfer during high irradiance treatment. Dephosphorylation of the CP43 apoprotein and PsbH protein by an alkaline phosphatase resulted in an extreme sensitivity of the thylakoids to strong illumination. The PSII photoinactivation of thylakoids with the impaired oxygen-evolving complex was found to be independent of phosphorylation.
The thylakoids of the thermophilic cyanobacterium Synechococcus elongates were used in order to compare the plants with an organism where LHCII complexes are missing and the PSII core proteins are not phosphorylated.  相似文献   
7.
Most flowering plant species are hermaphroditic, but a small number of species in most plant families are unisexual (i.e., an individ-ual will produce only male or female gametes). Because species with unisexual flowers have evolved repeatedly from hermaphroditic progenitors, the mechanisms controlling sex determination in flowering plants are extremely diverse. Sex is most strongly determined by genotype in all species but the mechanisms range from a single controlling locus to sex chromosomes bearing several linked locirequired for sex determination. Plant hormones also influence sex expression with variable effects from species to species. Here, we review the genetic control of sex determination from a number of plant species to illustrate the variety of extant mechanisms. We emphasize species that are now used as models to investigate the molecular biology of sex determination. We also present our own investigations of the structure of plant sex chromosomes of white campion (Silene latifolia - Melan-drium album). The cytogenetic basis of sex determination in white campion is similar to mammals in that it has a male-specific Y-chromosome that carries dominant male determining genes. If one copy of this chromosome is in the genome, the plant is male. Otherwise it is female. Like mammalian Y-chromosomes, the white campion Y-chromosome is rich in repetitive DNA. We isolated repetitive sequences from microdissected Y-chromosomes of white campion to study the distribution of homologous repeated sequences on the Y-chromosome and the other chromosomes. We found the Y to be especially rich in repetitive sequences that were generally dispersed over all the white campion chromosomes. Despite its repetitive character, the Y-chromosome is mainly euchromatic. This may be due to the relatively recent evolution of the white campion sex chromosomes compared to the sex chromosomes of animals. © 1994 Wiley-Liss, Inc.  相似文献   
8.
9.
In the differentiating eubacterium Streptomyces coelicolor , nutritional imbalances activate a developmental programme which involves the heat-shock stress regulon. In liquid batch cultures, the growth curve could be separated into four components: rapid growth 1 (RG1), transition (T), rapid growth 2 (RG2) and stationary (S). Patterns of gene expression in cultures subjected to heat shock in various phases were recorded on two-dimensional gels and analysed using advanced statistical methods. The responses of all heat-shock proteins (HSPs) were highly dependent upon the growth phase, thus demonstrating that the four phases of growth were physiologically distinct. For many HSPs, the levels of thermal induction attained were closely related to growth stage-determined levels of synthesis before heat shock, thus supporting the idea that developmental and thermal induction of this stress regulon have common control elements. Cluster analysis identified five groups of HSPs displaying similar kinetics of heat and developmentally induced synthesis, probably reflecting the influence of major regulatory systems. Methods introduced here to analyse the response of groups of genes to multiple simultaneous stimuli should find broad applications to studies of other prokaryotic and eukaryotic regulons.  相似文献   
10.
In these studies, the Bordetella pertussis adenylate cyclase toxin-hemolysin homology to the Escherichia coli hemolysin is extended with the finding of cyaC, a homolog to the E. coli hlyC gene, which is required for the production of a functional hemolysin molecule in E. coli. Mutations produced in the chromosome of B. pertussis upstream from the structural gene for the adenylate cyclase toxin revealed a region which was necessary for toxin and hemolytic activities of the molecule. These mutants produced the 216-kDa adenylate cyclase toxin as determined by Western blot (immunoblot) analysis. The adenylate cyclase enzymatic activities of these mutants were equivalent to that of wild type, but toxin activities were less than 1% of that of wild type, and the mutants were nonhemolytic on blood agar plates and in in vitro assays. The upstream region restored hemolytic activity when returned in trans to the mutant strains. This genetic complementation defined a gene which acts in trans to activate the adenylate cyclase toxin posttranslationally. Sequence analysis of the upstream region defined an open reading frame with homology to the E. coli hlyC gene. In contrast to E. coli, this open reading frame is oriented oppositely from the adenylate cyclase toxin structural gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号