首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
排序方式: 共有38条查询结果,搜索用时 686 毫秒
1.
We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections.  相似文献   
2.
Nod1 is an intracellular protein that is involved in recognition of bacterial molecules and whose genetic variation has been linked to several inflammatory diseases. Previous studies suggested that the recognition core of Nod1 stimulatory molecules is gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP), but the identity of the major Nod1 stimulatory molecule produced by bacteria remains unknown. Here we show that bacteria produce lipophilic molecules capable of stimulating Nod1. Analysis of synthetic compounds revealed stereoselectivity of the DAP residue and that conjugation of lipophilic acyl residues specifically enhances the Nod1 stimulatory activity of the core iE-DAP. Furthermore, we demonstrate that lipophilic molecules induce and/or enhance the secretion of innate immune mediators from primary mouse mesothelial cells and human monocytic MonoMac6 cells, and this effect is mediated through Nod1. These results provide insight into the mechanism of immune recognition via Nod1, which might be useful in the design and testing of novel immunoregulators.  相似文献   
3.
Nisin is an example of type-A lantibiotics that contain cyclic lanthionine rings and unusual dehydrated amino acids. Among the numerous pore-forming antimicrobial peptides, type-A lantibiotics form an unique family of post-translationally modified peptides. Via the recognition of cell wall precursor lipid II, nisin has the capacity to form pores against Gram-positive bacteria with an extremely high activity in the nanomolar (nM) range. Here we report a high-resolution NMR spectroscopy study of nisin/lipid II interactions in SDS micelles as a model membrane system in order to elucidate the mechanism of molecular recognition at residue level. The binding to lipid II was studied through (15)N-(1)H HSQC titration, backbone amide proton temperature coefficient analysis, and heteronuclear (15)N[(1)H]-NOE relaxation dynamics experiments. Upon the addition of lipid II, significant changes were monitored in the N-terminal part of nisin. An extremely low amide proton temperature coefficient (Delta delta/Delta T) was found for the amide proton of Ala3 (> -0.1 ppb/K) in the complex form. This suggests tight hydrogen bonding and/or isolation from the bulk solvent for this residue. Large chemical shift perturbations were also observed in the first two rings. In contrast, the C-terminal part of nisin was almost unaffected. This part of the molecule remains flexible and solvent-exposed. On the basis of our results, a multistep pore-forming mechanism is proposed. The N-terminal part of nisin first binds to lipid II, and a subsequent structural rearrangement takes place. The C-terminal part of nisin is possibly responsible for the activation of the pore formation. In light of the emerging antibiotic resistance problems, an understanding of the specific recognition mechanism of nisin with lipid II at the residue specific level may therefore aid in the development of novel antibiotics.  相似文献   
4.
Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP1B, and PBP3 had an affinity to immobilized FtsN. FtsN and PBP3, but not PBP1A, showed an affinity to immobilized PBP1B. The direct interaction between FtsN and PBP1B was confirmed by pulldown experiments and surface plasmon resonance. The interaction was also detected by bacterial two-hybrid analysis. FtsN and PBP1B could be cross-linked in intact cells of the wild type and in cells depleted of PBP3 or FtsW. FtsN stimulated the in vitro murein synthesis activities of PBP1B. Thus, FtsN could have a role in controlling or modulating the activity of PBP1B during cell division in Escherichia coli.  相似文献   
5.
PBP1B is a major bifunctional murein (peptidoglycan) synthase catalyzing transglycosylation and transpeptidation reactions in Escherichia coli. PBP1B has been shown to form dimers in vivo. The K(D) value for PBP1B dimerization was determined by surface plasmon resonance. The effect of the dimerization of PBP1B on its activities was studied with a newly developed in vitro murein synthesis assay with radioactively labeled lipid II precursor as substrate. Under conditions at which PBP1B dimerizes, the enzyme synthesized murein with long glycan strands (>25 disaccharide units) and with almost 50% of the peptides being part of cross-links. PBP1B was also capable of synthesizing trimeric muropeptide structures. Tri-, tetra-, and pentapeptide compounds could serve as acceptors in the PBP1B-catalyzed transpeptidation reaction.  相似文献   
6.
In order to enhance the membrane disruption of antimicrobial peptides both targeting and multivalent presentation approaches were explored. The antimicrobial peptides anoplin and temporin L were conjugated via click chemistry to vancomycin and to di- and tetravalent dendrimers. The vancomycin unit led to enhanced membrane disruption of large unilamellar vesicles (LUVs) displaying the vancomycin target lipid II, but only for temporin L and not for anoplin. The multivalent presentation led to enhanced LUV membrane disruption in the case of anoplin but not for temporin L.  相似文献   
7.
Clostridium perfringens possesses at least two functional quorum sensing (QS) systems, i.e. an Agr-like system and a LuxS-dependent AI-2 system. Both of those QS systems can reportedly control in vitro toxin production by C. perfringens but their importance for virulence has not been evaluated. Therefore, the current study assessed whether these QS systems might regulate the pathogenicity of CN3685, a C. perfringens type C strain. Since type C isolates cause both haemorrhagic necrotic enteritis and fatal enterotoxemias (where toxins produced in the intestines are absorbed into the circulation to target other internal organs), the ability of isogenic agrB or luxS mutants to cause necrotizing enteritis in rabbit small intestinal loops or enterotoxemic lethality in mice was evaluated. Results obtained strongly suggest that the Agr-like QS system, but not the LuxS-dependent AI-2 QS system, is required for CN3685 to cause haemorrhagic necrotizing enteritis, apparently because the Agr-like system regulates the production of beta toxin, which is essential for causing this pathology. The Agr-like system, but not the LuxS-mediated AI-2 system, was also important for CN3685 to cause fatal enterotoxemia. These results provide the first direct evidence supporting a role for any QS system in clostridial infections.  相似文献   
8.
The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three constituents of the divisome, PBP3, FtsW, and FtsN, suggesting that MtgA may play a role in peptidoglycan assembly during the cell cycle in collaboration with other proteins.  相似文献   
9.
Jiang  Han  Tang  Xuan  Zhou  Qingqing  Zou  Jiong  Li  Ping  Breukink  Eefjan  Gu  Qing 《Applied microbiology and biotechnology》2018,102(17):7465-7473
Applied Microbiology and Biotechnology - Plantaricin NC8, a two-peptide non-lantibiotic class IIb bacteriocin composed of PLNC8α and PLNC8β and derived from Lactobacillus plantarum ZJ316,...  相似文献   
10.
Lipid II is an essential cell-wall precursor required for the growth and replication of both Gram-positive and Gram-negative bacteria. Compounds that use lipid II to selectively target bacterial cells for destruction represent an important class of antibiotics. Clinically, vancomycin is the most important example of an antibiotic that operates in this manner. Despite being considered the 'antibiotic drug of last resort', significant bacterial resistance to vancomycin now manifests itself worldwide. In this paper we review recent progress made in understanding the lipid II-associated antibacterial characteristics of various naturally occurring compounds, with particular focus on the lantibiotic peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号