首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Tragopogon mirus Ownbey and T. miscellus Ownbey are allopolyploids that formed repeatedly during the past 80 years following the introduction of three diploids (T. dubius Scop., T. pratensis L. and T. porrifolius L.) from Europe to western North America. These polyploid species of known parentage are useful for studying the consequences of recent and recurrent polyploidization. We summarize recent analyses of the cytogenetic, genomic and genetic consequences of polyploidy in Tragopogon. Analyses of rDNA ITS (internal transcribed spacer) + ETS (external transcribed spacer) sequence data indicate that the parental diploids are phylogenetically well separated within Tragopogon (a genus of perhaps 150 species), in agreement with isozymic and cpDNA data. Using Southern blot and cloning experiments on tissue from early herbarium collections of T. mirus and T. miscellus (from 1949) to represent the rDNA repeat condition closer to the time of polyploidization than samples collected today, we have demonstrated concerted evolution of rDNA. Concerted evolution is ongoing, but has not proceeded to completion in any polyploid population examined; rDNA repeats of the diploid T. dubius are typically lost or converted in both allopolyploids, including populations of independent origin. Molecular cytogenetic studies employing rDNA probes, as well as centromeric and subtelomeric repeats isolated from Tragopogon, distinguished all chromosomes among the diploid progenitors (2n = 12). The diploid chromosome complements are additive in both allopolyploids (2n = 24); there is no evidence of major chromosomal rearrangements in populations of either T. mirus or T. miscellus. cDNA‐AFLP display revealed differences in gene expression between T. miscellus and its diploid parents, as well as between populations of T. miscellus of reciprocal origin. Approximately 5% of the genes examined in the allopolyploid populations have been silenced, and an additional 4% exhibit novel gene expression relative to their diploid parents. Some of the differences in gene expression represent maternal or paternal effects. Multiple origins of a polyploid species not only affect patterns of genetic variation in natural populations, but also contribute to differential patterns of gene expression and may therefore play a major role in the long‐term evolution of polyploids. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 485–501.  相似文献   
2.
Genetic analysis of noninvasively collected bird feathers is of growing importance to avian ecology; however, most genetic studies that utilize feathers make no mention of the need to verify their species of origin. While plumage patterns and collection location often are indicative of species identity, broad‐scale feather collections may require definitive species identification prior to analysis. Genetic species identification has been applied to noninvasively collected samples from a wide range of taxa but, to date, these techniques have not been widely used on bird feathers. Here, we develop and test a polymerase chain reaction (PCR)‐based technique for identifying eastern imperial eagle (Aquila heliaca) samples among a vast number of noninvasively collected feathers. Species identification is accomplished by amplifying a fragment of the mitochondrial cytochrome c oxidase I gene, then digesting that fragment with a restriction enzyme. The resulting species‐specific restriction fragment length polymorphisms (RFLPs) are easily visualized by gel electrophoresis. We tested this PCR‐RFLP assay on over 300 individuals that had been genetically identified from noninvasively collected feathers and demonstrated that the assay is both reliable and robust for DNA of low quality and quantity. The genetic methods of species identification used to develop this assay can readily be applied to other bird assemblages, making them particularly relevant to a broad range of future avian research.  相似文献   
3.
A unique community of four syntopic eagle species exists in north‐central Kazakhstan. Questions about behaviour and genetics in these four species would benefit from the development of microsatellite markers. We isolated eight polymorphic microsatellite repeats (AAAG)n from the eastern imperial eagle (Aquila heliaca) genome using a hybridization enrichment technique. These loci revealed moderate diversity in a local population of eastern imperial eagles (observed heterozygosity 0.26–0.78), and were also polymorphic in steppe eagles (A. nipalensis) and white‐tailed sea eagles (Haliaeetus albicilla). These primers may be polymorphic in other species of Aquila and Haliaeetus eagles.  相似文献   
4.
The allotetraploids (2n = 24) Tragopogon mirus and T. miscellus have become textbook examples of recently and recurrently formed allopolyploids. Both species formed following the introduction of three diploids, T. dubius, T. porrifolius and T. pratensis (each with 2n = 12), from Europe into the Palouse region of eastern Washington and adjacent Idaho, USA, in the early 1900s. The parentage of both allotetraploids is well documented (T. mirus = T. dubius × T. porrifolius; T. miscellus = T. dubius × T. pratensis), and both allotetraploids have formed repeatedly in the past approximately 80 years in the Palouse. On a larger geographical scale, T. mirus has also been reported from Flagstaff, Arizona (AZ), and more recently from Oregon (OR). However, the populations from OR and AZ have not been previously analysed with molecular markers to test the hypothesis of separate origin (vs. long‐distance dispersal). Here, we show that both the AZ and OR collections of T. mirus combine distinctive parental genotypes and are genetically differentiated from the T. mirus genotypes found in the Palouse. The OR sample of T. mirus has a genetically distinct T. dubius contribution that forms a clade in our analyses with a sample of what has been referred to as T. major (now considered a subspecies of T. dubius). Consistent with other naturally occurring T. mirus populations, plastid sequences indicate that T. porrifolius was the maternal parent for both the AZ and OR collections. Microsatellite data are also consistent with local formation of T. mirus from co‐occurring populations of T. dubius and T. porrifolius in OR and AZ. As with sequence data, T. dubius from OR is distinct from other samples of T. dubius at microsatellite loci, contributing a unique signature to T. mirus from this location. It will be useful to include these additional geographical origins of T. mirus, particularly the more genetically distant sample from OR, in ongoing investigations of the genetic and genomic consequences of recent allopolyploidy. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 297–311.  相似文献   
5.
6.
The demographic consequences of within-population variability in predator foraging are not well understood. We assessed the relationship between the degree of diet specialization and two demographic parameters, population density and reproductive output, within a single population of Imperial Eagles Aquila heliaca at a nature reserve in north-central Kazakhstan. Nearest-neighbour distances between eagle nests throughout the reserve, and thus population density, were correlated with the degree to which diets were specialized. Diet diversity showed an extensive regional variability that was linked to prey distributions, but within-year analyses of reproductive output did not show similar linkages. However, multi-year analyses of breeding performance showed inter-regional differences in nesting success that were paralleled, and probably driven by, similar trends in diet diversity. In contrast, brood size at fledging was not linked to diet diversity and was more probably driven by reserve-wide influences such as weather. Finally, the decision to initiate breeding was associated neither with diet diversity nor with environmental variability. Our results indicate that the degree of dietary specialization is linked to the demographics of Imperial Eagle populations. For these and other raptor populations, it is possible that management could be used separately to increase or decrease nesting success, brood size at fledging, and the likelihood that a pair will initiate breeding.  相似文献   
7.
Tragopogon kashmirianus (Asteraceae: Lactuceae) (2n = 24) was described based on collections from Kashmir. The tetraploid is morphologically similar to allotetraploid T. mirus from North America that has formed in western North America from the introduced T. dubius (2n = 12) and T. porrifolius (salsify; 2n = 12). Singh and Kachroo (1976 ) suggested that T. kashmirianus might have formed from the same diploid parental combination as T. mirus. To determine this, we investigated internal and external transcribed spacers (ITS, ETS) and five plastid regions of T. kashmirianus and species reported from Kashmir, northern India and neighbouring countries (T. badachschanicus, T. longirostris, T. porrifolius, T. pratensis, T. orientalis, T. subalpinus, T. trachycarpus, T. gracilis and T. dubius). Molecular data indicate that the parents of T. kashmirianus are not the European T. porrifolius and T. dubius. The exact parentage of T. kashmirianus is still unclear, but if it is an allotetraploid, at least one parent is a species native to Kashmir/India. Alternatively, it may represent an autopolyploid, again with the diploid parent native to Kashmir/India. We also found that ‘T. dubius’ from Kashmir is phylogenetically and morphologically distinct from collections of T. dubius from Europe and probably represents a previously unrecognized species. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 391–398.  相似文献   
8.
9.
Abstract: Sustainable use of wildlife is crucial to ensuring persistence of natural resources. We used age-specific survival and breeding data to parameterize a demographic model for a harvested Kazakh saker falcon (Falco cherrug) population by radiotagging juveniles and estimating adult turnover with DNA-fingerprinting during 1993–1997. We gathered similar data during 1990–1998 to model populations of British buzzards (Buteo buteo), and during 1980–1998 to model populations of Swedish goshawks (Accipiter gentilis). Leg-bands and implanted microtransponders provided ways to test for bias and to estimate the harvest of sakers for falconry. Despite an estimated minimum first-year survival of only 23%, the observed productivity of 3.14 young per clutch would sustain a saker population (i.e., λ = 1) with a breeding rate (at laying) of only 0.63 for adults or with a residual juvenile yield of 37% if all adults breed. Higher first-year survival rates for goshawks and buzzards correlated with juvenile yields of up to 71%, but no more than half as many individuals if adults also were harvested. An annual population decline of 40% for sakers in southern Kazakhstan could be explained by observed productivity of only 0.71 young per clutch if there was also an estimated harvest of 55% of adults. This study shows that demographic models such as these can now be built rapidly if nestlings are fitted with reliable and safe radiotags and adult turnover is estimated from genetic analyses or other techniques.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号