首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   11篇
  2011年   9篇
  2010年   11篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  1998年   1篇
  1997年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1962年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
1.
Bacterial clones containing complementary DNA sequences specific for rat brain α-tubulin messenger RNA were constructed. One plasmid, pILαTl, contains >95% of the sequences found in the mRNA: the entire coding sequence as well as extensive 5′ and 3′ untranslated sequences. Comparison of the rat amino acid sequence with the known chicken α-tubulin sequence (Valenzuela et al., 1981) reveals the extraordinary evolutionary stability of α-tubulin protein. The presence of only two interspecies amino acid differences within analogous 411 amino acid sequences predicts that amino acid substitutions in this protein are fixed with a unit evolutionary period (Wilson et al., 1977) of 550 million years (i.e. the time required for a 1% difference to arise within a specific protein in two diverging evolutionary lineages). An analysis of the silent nucleotide differences, permissible because of the degeneracy of the genetic code, demonstrates that these might not occur in a random fashion. The high guanine-cytosine bias in silent codon positions within the chicken α-tubulin sequence, previously noted by Valenzuela et al. (1981), is not conserved within the rat sequence. This decrease in guanine-cytosine bias is accompanied by a selective loss of CpG dinucleotides in the rat sequence.  相似文献   
2.
3.
Aging is often associated with accumulation of oxidative damage in proteins and lipids. However, some studies do not support this view, raising the question of whether high levels of oxidative damage are associated with lifespan. In the current investigation, Drosophila melanogaster flies were kept on diets with 2 or 10% of either glucose or fructose. The lifespan, fecundity, and feeding as well as amounts of protein carbonyls (PC) and lipid peroxides (LOOH), activities of superoxide dismutase (SOD), catalase, glutathione‐S‐transferase (GST), and glutathione reductase activity of thioredoxin reductase (TrxR) were measured in “young” (10‐day old) and “aged” (50‐day old) flies. Flies maintained on diets with 10% carbohydrate lived longer than those on the 2% diets. However, neither lifespan nor fecundity was affected by the type of carbohydrate. The amount of PC was unaffected by diet and age, whereas flies fed on diets with 10% carbohydrate had about fivefold higher amounts of LOOH compared to flies maintained on the 2% carbohydrate diets. Catalase activity was significantly lower in flies fed on diets with 10% carbohydrates compared to flies on 2% carbohydrate diets. The activities of SOD, GST, and TrxR were not affected by the diet or age of the flies. The higher levels of LOOH in flies maintained on 10% carbohydrate did not reduce their lifespan, from which we infer that oxidative damage to only one class of biomolecules, particularly lipids, is not sufficient to influence lifespan.  相似文献   
4.
Knockout studies have shown that the polycomb gene Bmi-1 is important for postnatal, but not embryonic, neural stem cell (NSC) self-renewal and have identified the cell-cycle inhibitors p16/p19 as molecular targets. Here, using lentiviral-delivered shRNAs in vitro and in vivo, we determined that Bmi-1 is also important for NSC self-renewal in the embryo. We found that neural progenitors depend increasingly on Bmi-1 for proliferation as development proceeds from embryonic through adult stages. Acute shRNA-mediated Bmi-1 reduction causes defects in embryonic and adult NSC proliferation and self-renewal that, unexpectedly, are mediated by a different cell-cycle inhibitor, p21. Gene array analyses revealed developmental differences in Bmi-1-controlled expression of genes in the p21-Rb cell cycle regulatory pathway. Our data therefore implicate p21 as an important Bmi-1 target in NSCs, potentially with stage-related differences. Understanding stage-related mechanisms underlying NSC self-renewal has important implications for development of stem cell-based therapies.  相似文献   
5.
Angiotensin-converting enzyme (ACE) is present on the luminal surface of the coronary vessels, mostly on capillary endothelium. ACE is also expressed on coronary smooth muscle cells and on plaque lipid-laden macrophages. Excessive coronary circulation (CC)-ACE activity might be linked to plaque progression. Here we used the biologically inactive ACE substrate (3)H-labeled benzoyl-Phe-Ala-Pro ([(3)H]BPAP) to quantify CC-ACE activity in 10 patients by means of the indicator-dilution technique. The results were compared with atherosclerotic burden determined by coronary angiography. There was a wide range of CC-ACE activity as revealed by percent [(3)H]BPAP hydrolysis (30-74%). The atherosclerotic extent scores ranged from 0.0 to 66.97, and the plaque area scores ranged from 0 to 80 mm(2). CC-ACE activity per unit extracellular space (V(max)/K(m)V(i)), an index of metabolically active vascular surface area, was correlated with myocardial blood flow (r = 0.738; P = 0.03) but not with measures of the atherosclerotic burden. These results show that CC-ACE activity can be safely measured in humans and that it is a good marker of the vascular area of the perfused myocardium. It does not, however, reflect epicardial atherosclerotic burden, suggesting that local tissue ACE may be more important in plaque development.  相似文献   
6.
7.
8.
9.
Ovarian cancer is a lethal gynecological disease that is characterized by peritoneal metastasis and increased resistance to conventional chemotherapies. This increased resistance and the ability to spread is often attributed to the formation of multicellular aggregates or spheroids in the peritoneal cavity, which seed abdominal surfaces and organs. Given that the presence of metastatic implants is a predictor of poor survival, a better understanding of how spheroids form is critical to improving patient outcome, and may result in the identification of novel therapeutic targets. Thus, we attempted to gain insight into the proteomic changes that occur during anchorage-independent cancer cell aggregation. As such, an ovarian cancer cell line, OV-90, was cultured in adherent and non-adherent conditions using stable isotope labeling with amino acids in cell culture (SILAC). Anchorage-dependent cells (OV-90AD) were grown in tissue culture flasks, whereas anchorage-independent cells (OV-90AI) were grown in suspension using the hanging-drop method. Cellular proteins from both conditions were then identified using LC-MS/MS, which resulted in the quantification of 1533 proteins. Of these, 13 and 6 proteins were up-regulated and down-regulated, respectively, in aggregate-forming cells compared with cells grown as monolayers. Relative gene expression and protein expression of candidates were examined in other cell line models of aggregate formation (TOV-112D and ES-2), which revealed an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Moreover, inhibitor and siRNA transfection studies demonstrated an apparent effect of CLCA1 on cancer cell aggregation. Further elucidation of the role of CLCA1 in the pathogenesis of ovarian cancer is warranted.  相似文献   
10.
Transforming growth factor-beta (TGFbeta) is a potent regulator of cell growth, differentiation, and apoptosis. TGFbeta binds to specific serine/threonine kinase receptors, which leads to activation of Smad-dependent and Smad-independent signaling pathways. O-Glycosylation is a dynamic PTM which has been observed in many regulatory proteins, but has not been studied in the context of TGFbeta signaling. To explore the effect of TGFbeta1 on protein O-glycosylation in human breast epithelial cells, we performed analyses of proteins which were affinity purified with Helix pomatia agglutinin (HPA). HPA lectin allowed enrichment of proteins containing GalNAc and GlcNAc linked to serine and threonine residues. Using 2-DE and MALDI-TOF-MS, we identified 21 HPA-precipitated proteins, which were affected by treatment of cells with TGFbeta1. Among these proteins, regulators of cell survival, apoptosis, trafficking, and RNA processing were identified. We found that TGFbeta1 inhibited the appearance of cell death-inducing DFF-like effector A (CIDE-A) in 2-D gels with HPA-precipitated proteins. CIDE-A is a cell death activator which promotes DNA fragmentation. We observed that TGFbeta1 did not affect expression of CIDE-A, but inhibited its glycosylation. We found that deglycosylation of CIDE-A correlated with enhanced nuclear export of the protein, and that high level of nonglycosylated CIDE-A inhibited TGFbeta1-dependent cell death. Thus, inhibition of the glycosylation of CIDE-A may be a mechanism to protect cells from apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号