首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   7篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2012年   2篇
  2009年   2篇
  2007年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
排序方式: 共有31条查询结果,搜索用时 46 毫秒
1.
Bacterial production and amino acid metabolism in aquatic systems can be estimated by simultaneous incubation of water samples with both tritiated methyl-thymidine and 14C-labeled amino acids. This dual-label method not only saves time, labor, and materials, but also allows determination of these two parameters in the same microbial subcommunity. Both organic carbon incorporation and respiration can be estimated. The results obtained with the dual-label technique are not significantly different from single-radiolabel methods over a wide range of bacterial activity. The method is particularly suitable for large-scale field programs and has been used successfully with eutrophic estuarine samples as well as with oligotrophic oceanic water. In the mesohaline portion of Chesapeake Bay, thymidine incorporation ranged seasonally from 2 to 635 pmol liter−1 h−1 and amino acid turnover rates ranged from 0.01 to 28.4% h−1. Comparison of thymidine incorporation with amino acid turnover measurements made at a deep, midbay station in 1985 suggested a close coupling between bacterial production and amino acid metabolism during most of the year. However, production-specific amino acid turnover rates increased dramatically in deep bay waters during the spring phytoplankton bloom, indicating transient decoupling of bacterial production from metabolism. Ecological features such as this are readily detectable with the dual-label method.  相似文献   
2.
Modeling the microbial food web   总被引:1,自引:0,他引:1  
Models of the microbial food web have their origin in the debate over the importance of bacteria as an energetic subsidy for higher trophic levels leading to harvestable fisheries. Conceptualization of the microbial food web preceded numerical models by 10–15 years. Pomeroy's work was central to both efforts. Elements necessary for informative and comprehensive models of microbial loops in plankton communities include coupled carbon and nitrogen flows utilizing a size-based approach to structuring and parameterizing the food web. Realistic formulation of nitrogen flows requires recognition that both nitrogenous and nonnitrogenous organic matter are important substrates for bacteria. Nitrogen regeneration driven by simple mass-specific excretion constants seems to overestimate the role of bacteria in the regeneration process. Quantitative assessment of the link-sink question, in which the original loop models are grounded, requires sophisticated analysis of size-based trophic structures. The effects of recycling complicate calculation of the link between bacteria or dissolved organic matter and mesozooplankton, and indirect effects show that the link might be much stronger than simple analyses have suggested. Examples drawn from a series of oceanic mixed layer plankton models are used to illustrate some of these points. Single-size class models related to traditional P-Z-N approaches are incapable of simulating bacterial biomass cycles in some locations (e.g., Bermuda) but appear to be adequate for more strongly seasonal regimes at higher latitudes.  相似文献   
3.
We performed a series of seawater culture experiments on surface mixed layer samples during the spring phytoplankton bloom in the North Atlantic Ocean. Diluted (20% unfiltered + 80% 0.22 m filtered) and untreated whole seawater samples were incubated up to 40 hour and sampled periodically for cell numbers, biovolume, and incorporation of 3H-thymidine and -leucine. Abundance and biovolume increased exponentially at similar rates in diluted and whole samples, suggesting that removal by bacteriovores was low compared with growth. The exponential increase in biovolume was due to increases in cell numbers and mean cell volume. Generation times (i.e., 0.693/) averaged 36–53 hour in these surface (10 m) samples. Ninety percent of the tritiated thymidine incorporation (TTI) into cold trichloroacetic acid-insoluble cell fractions was recovered after extraction with NaOH and phenolchloroform, indicating that catabolism of thymidine and its appearance in RNA or protein was very low. The percentage of thymidine recovered in DNA did not change over the 40 hour of incubation and was the same as in water column samples. Rates of thymidine and leucine incorporation also increased exponentially. Incorporation rates tended to increase more rapidly than cell numbers or biovolume, though the differences were not significantly different, due to the small number of samples and variability over the time courses. Differential rates of increase in cellular properties during growth might indicate a lack of coupling between incorporation and production over time scales of hours-days. This in turn may reflect unbalanced growth of bacterial assemblages, which is an adaptation to variable conditions in the upper ocean in this season. Nonequality of rate constants for cells and incorporation yields conversion factors that are either higher or lower than would be calculated from balanced growth (i.e., rates of increase in numbers and incorporation rates equal), depending on the calculation approach chosen. An alternative approach to calculating conversion factors (the modified derivative approach) is proposed, which is insensitive to differential rates of increase of abundance and incorporation.  相似文献   
4.
The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens.  相似文献   
5.
Book review     
  相似文献   
6.
Rapid warming in the highly productive western Antarctic Peninsula (WAP) region of the Southern Ocean has affected multiple trophic levels, yet viral influences on microbial processes and ecosystem function remain understudied in the Southern Ocean. Here we use cultivation-independent quantitative ecological and metagenomic assays, combined with new comparative bioinformatic techniques, to investigate double-stranded DNA viruses during the WAP spring–summer transition. This study demonstrates that (i) temperate viruses dominate this region, switching from lysogeny to lytic replication as bacterial production increases, and (ii) Southern Ocean viral assemblages are genetically distinct from lower-latitude assemblages, primarily driven by this temperate viral dominance. This new information suggests fundamentally different virus–host interactions in polar environments, where intense seasonal changes in bacterial production select for temperate viruses because of increased fitness imparted by the ability to switch replication strategies in response to resource availability. Further, temperate viral dominance may provide mechanisms (for example, bacterial mortality resulting from prophage induction) that help explain observed temporal delays between, and lower ratios of, bacterial and primary production in polar versus lower-latitude marine ecosystems. Together these results suggest that temperate virus–host interactions are critical to predicting changes in microbial dynamics brought on by warming in polar marine systems.  相似文献   
7.

Background

Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU) ribosomal RNA (rRNA) genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of the SSU rRNA gene including the V9 region in eukaryotes.

Methodology/Principal Findings

We present a protocol for the amplicon pyrosequencing of V9 regions for eukaryotic environmental samples for biodiversity inventories and species richness estimation. The International Census of Marine Microbes (ICoMM) and the Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs) projects are already employing this protocol for tag sequencing of eukaryotic samples in a wide diversity of both marine and freshwater environments.

Conclusions/Significance

Massively parallel pyrosequencing of eukaryotic V9 hypervariable regions of SSU rRNA genes provides a means of estimating species richness from deeply-sampled populations and for discovering novel species from the environment.  相似文献   
8.
9.
We analyzed the phylogenetic compositions of ammonia-oxidizing bacteria of the beta subclass of Proteobacteria from 42 Southern Ocean samples. We found a Nitrosospira-like 16S rRNA gene sequence in all 20 samples that yielded PCR products (8 of 30 samples from the Ross Sea and 12 of 12 samples from the Palmer Peninsula). We also found this sequence in Arctic Ocean samples, indicating a transpolar, if not global, distribution; however, slight differences between Arctic and Antarctic sequences may be evidence of polar endemism.  相似文献   
10.
Scanning electron microscopic (SEM) observations of naturally and artificially diseased corals reveal that the disease is characterized by a filamentous matrix of cyanobacterial andBeggiatoa filaments. Spiral bacteria are commonly embedded in the matrix. The artificial disease is not manifested as the characteristic black line disease and does not contain filaments of cyanobacteria. This suggests that cyanobacteria are necessary for the black line phenomenon. The colorless, sulfide-oxidizing bacteriumBeggiatoa, however, is always associated with the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号