首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2022年   2篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Teams of processive molecular motors are critical for intracellular transport and organization, yet coordination between motors remains poorly understood. Here, we develop a system using protein components to generate assemblies of defined spacing and composition inside cells. This system is applicable to studying macromolecular complexes in the context of cell signaling, motility, and intracellular trafficking. We use the system to study the emergent behavior of kinesin motors in teams. We find that two kinesin motors in complex act independently (do not help or hinder each other) and can alternate their activities. For complexes containing a slow kinesin-1 and fast kinesin-3 motor, the slow motor dominates motility in vitro but the fast motor can dominate on certain subpopulations of microtubules in cells. Both motors showed dynamic interactions with the complex, suggesting that motor–cargo linkages are sensitive to forces applied by the motors. We conclude that kinesin motors in complex act independently in a manner regulated by the microtubule track.  相似文献   
2.
Transmission blocking vaccines (TBVs) that target the antigens on the midgut epithelium of Anopheles mosquitoes are among the promising tools for the elimination of the malaria parasite. Characterization and analysis of effective antigens is the first step to design TBVs. Calreticulin (CRT), a lectin-like protein, from Anopheles albimanus midgut, has shown antigenic features, suggesting a promising and novel TBV target. CRT is a highly conserved protein with similar features in vertebrates and invertebrates including anopheline. We cloned the full-length crt gene from malaria vector, Anopheles stephensi (AsCrt) and explored the interaction of recombinant AsCrt protein, expressed in a prokaryotic system (pGEX-6p-1), with surface proteins of Plasmodium berghei ookinetes by immunofluorescence assay. The cellular localization of AsCrt was determined using the baculovirus expression system. Sequence analysis of the whole cDNA of AsCrt revealed that AsCrt contains an ORF of 1221 bp. The amino acid sequence of AsCrt protein obtained in this study showed 64% homology with similar protein in human. The AsCrt shares the most common features of CRTs from other species. This gene encodes a 406 amino-acid protein with a molecular mass of 46 kDa, which contains a predicted 16 amino-acid signal peptides, conserved cysteine residues, a proline-rich region, and highly acidic C-terminal domain with endoplasmic reticulum retrieval sequence HDEL. The production of GST-AsCrt recombinant protein was confirmed by Western blot analysis using an antibody against the GST protein. The FITC-labeled GST-AsCrt exhibited a significant interaction with P. berghei ookinete surface proteins. Purified recombinant GST-AsCrt, labeled with FITC, displayed specific binding to the surface of P. berghei ookinetes in comparison with control. Moreover, the expression of AsCrt in baculovirus expression system indicated that AsCrt was localized on the surface of Sf9 cells. Our results suggest that AsCrt could be utilized as a potential target for future studies in TBV area for malaria control.  相似文献   
3.

Apigenin, as a natural flavonoid present in several plants is characterized with potential anticancer, antioxidant, and anti-inflammatory properties. Recent studies proposed that apigenin affects depression disorder through unknown mechanistic pathways. The effects of apigenin’s anti-depressive properties on streptozocin-mediated depression have been investigated through the evaluation of behavioral tests, oxidative stress, cellular energy homeostasis and inflammatory responses. The results demonstrated anti-depressive properties of apigenin in behavioral test including forced swimming and splash tests and oxidative stress biomarkers such as reduced glutathione, lipid peroxidation, total antioxidant power and coenzyme Q10 levels. Apigenin, also, demonstrated its regulatory potency in cellular energy homeostasis and immune system gene expression through inhibiting Nlrp3 and Tlr4 overexpression. Furthermore, failure in energy production as the key factor in various psychiatric disorders was reversed by apigenin modulating effect on AMPK gene expression. Overall, 20 mg/kg of apigenin was recognized as the dose suitable for minimizing the undesirable adverse effects in the STZ-mediated depression model proposed in this study. Our data suggested that apigenin could be able to adjust behavioral dysfunction, biochemical biomarkers and recovered cellular antioxidant level in depressed animals. The surprising results were achieved by raise in COQ10 level, which could regulate the overexpression of the AMPK gene in stressful conditions. The regulatory effect of apigenin in inflammatory signaling pathways such as Nlrp3, and Tlr4 gene expression was studied at the surface part of the hippocampus.

  相似文献   
4.
Patients with glioblastoma multiforme (GBM) have poor therapeutic outcomes despite their current therapy. In an attempt to increase the efficacy of therapy for GBM, we studied the efficacy of arsenic trioxide (ATO), a newly introduced treatment for glioma, combined with silibinin, a natural polyphenolic flavonoid, in the GBM cell line, U87MG. The combination therapy synergically inhibited metabolic activity, cell proliferation, and gelatinase A and B activities; it also increased apoptosis. Additionally, it decreased the mRNA level of cathepsin B, uPA, matrix metalloproteinase-2 and 9, membrane type 1-MMP, survivin, BCL2, CA9; it increased mRNA level of caspase-3. Altogether, these results showed that ATO and silibinin in some cases improved and/or complemented the anticancer effects. This study may supply insight into the design of new combination cancer therapies to cells intrinsically less sensitive to routine therapies and suggested a new combination therapy for the highly invasive human glioma treatment.  相似文献   
5.
The mosquito’s innate immune system defends against a variety of pathogens, and the conserved siRNA pathway plays a central role in the control of viral infections. Here, we show that transgenic overexpression of Dicer2 (Dcr2) or R2d2 resulted in an accumulation of 21-nucleotide viral sequences that was accompanied by a significant suppression of dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) replication, thus indicating the broad-spectrum antiviral response mediated by the siRNA pathway that can be applied for the development of novel arbovirus control strategies. Interestingly, overexpression of Dcr2 or R2d2 regulated the mRNA abundance of a variety of antimicrobial immune genes, pointing to additional functions of DCR2 and R2D2 as well as cross-talk between the siRNA pathway and other immune pathways. Accordingly, transgenic overexpression of Dcr2 or R2d2 resulted in a lesser proliferation of the midgut microbiota and increased resistance to bacterial and fungal infections.

This study shows that transgenic overexpression of siRNA pathway factors in mosquitoes mediates a broad-spectrum antiviral action against human pathogenic viruses such as dengue, Zika and Chikungunya virus, with implications for novel arbovirus control strategies; the siRNA pathway also regulates antimicrobial immune responses against bacterial and fungal infections.  相似文献   
6.
To date, many studies have been conducted to find out the underlying mechanisms of hyperglycemia‐induced complications in diabetes mellitus, attributed to the cellular pathologies of different cells—especially endothelial cells. However, there are still many ambiguities and unresolved issues to be clarified. Here, we investigated the alteration in biophysical and biochemical properties in human umbilical vein endothelial cells exposed to a high‐glucose concentration (30mM), comparable to glucose content in type 2 diabetes mellitus, over a course of 120 hours. In addition to a reduction in the rate of cell viability and induction of oxidative stress orchestrated by the high‐glucose condition, the dynamic of the fatty acid profile—including polyunsaturated, monounsaturated, and saturated fatty acids—was also altered in favor of saturated fatty acids. Genetic imbalances were also detected at chromosomal level in the cells exposed to the abnormal concentration of glucose after 120 hours. Moreover, the number of tip cells (CD31+/CD34+) and in vitro tubulogenesis capability negatively diminished in comparison to parallel control groups. We found that diabetic hyperglycemia was associated with a decrease in the cell‐cell tight junction and upregulation in vascular endothelial cadherin and zonula occludens (ZO)‐1 molecules after 72 and 120 hours of exposure to the abnormal glucose concentration, which resulted in a profound reduction in transendothelial electrical resistance. The surface plasmon resonance analysis of the human umbilical vein endothelial cells immobilized on gold‐coated sensor chips confirmed the loosening of the cell to cell intercellular junction as well as stable attachment of each cell to the basal surface. Our findings highlighted the disturbing effects of a diabetic hyperglycemia on either biochemical or biophysical properties of endothelial cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号