首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2014年   3篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2005年   4篇
  2004年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Cell and Tissue Banking - The detection of corneas operated on for refractive surgery [LASIK or photorefractive keratectomy (PRK)] will become a major concern for eye banks in the coming years...  相似文献   
2.
Patients with atopic dermatitis (AD) have repeated cutaneous exposure to both environmental allergens and superantigen-producing strains of Staphylococcus aureus. We used a murine model of AD to investigate the role of staphylococcal enterotoxin B (SEB) in the modulation of allergen-induced skin inflammation. Mice were topically exposed to SEB, OVA, a combination of OVA and SEB (OVA/SEB), or PBS. Topical SEB and OVA/SEB exposure induced epidermal accumulation of CD8+ T cells and TCRVbeta8+ cells in contrast to OVA application, which induced a mainly dermal infiltration of CD4+ cells. SEB and OVA/SEB exposure elicited a mixed Th1/Th2-associated cytokine and chemokine expression profile within the skin. Restimulation of lymph node cells from OVA- and OVA/SEB-exposed mice with OVA elicited strong production of IL-13 protein, whereas substantial amounts of IFN-gamma protein were detected after SEB stimulation of cells derived from SEB- or OVA/SEB-exposed mice. Topical SEB treatment elicited vigorous production of SEB-specific IgE and IgG2a Abs and significantly increased the production of OVA-specific IgE and IgG2a Abs. The present study shows that topical exposure to SEB provokes epidermal accumulation of CD8+ T cells, a mixed Th2/Th1 type dermatitis and vigorous production of specific IgE and IgG2a Abs, which can be related to the chronic phase of atopic skin inflammation.  相似文献   
3.
Atopic dermatitis represents a chronically relapsing skin disease with a steadily increasing prevalence of 10-20% in children. Skin-infiltrating T cells, dendritic cells (DC), and mast cells are thought to play a crucial role in its pathogenesis. We report that the expression of the CC chemokine CCL1 (I-309) is significantly and selectively up-regulated in atopic dermatitis in comparison to psoriasis, cutaneous lupus erythematosus, or normal skin. CCL1 serum levels of atopic dermatitis patients are significantly higher than levels in healthy individuals. DC, mast cells, and dermal endothelial cells are abundant sources of CCL1 during atopic skin inflammation and allergen challenge, and Staphylococcus aureus-derived products induce its production. In vitro, binding and cross-linking of IgE on mast cells resulted in a significant up-regulation of this inflammatory chemokine. Its specific receptor, CCR8, is expressed on a small subset of circulating T cells and is abundantly expressed on interstitial DC, Langerhans cells generated in vitro, and their monocytic precursors. Although DC maintain their CCR8+ status during maturation, brief activation of circulating T cells recruits CCR8 from intracytoplamic stores to the cell surface. Moreover, the inflammatory and atopy-associated chemokine CCL1 synergizes with the homeostatic chemokine CXCL12 (SDF-1alpha) resulting in the recruitment of T cell and Langerhans cell-like DC. Taken together, these findings suggest that the axis CCL1-CCR8 links adaptive and innate immune functions that play a role in the initiation and amplification of atopic skin inflammation.  相似文献   
4.
Atopic dermatitis is a chronic inflammatory skin disease with a steadily increasing prevalence. Exposure to allergens or bacterial superantigens triggers T and dendritic cell (DC) recruitment and induces atopic skin inflammation. In this study, we report that among all known chemokines CCL18/DC-CK1/PARC represents the most highly expressed ligand in atopic dermatitis. Moreover, CCL18 expression is associated with an atopic dermatitis phenotype when compared with other chronic inflammatory skin diseases. DCs either dispersed within the dermis or clustering at sites showing perivascular infiltrates are abundant sources of CCL18. In vitro, microbial products including LPS, peptidoglycan, and mannan, as well as the T cell-derived activation signal CD40L, induced CCL18 in monocytes. In contrast to monocytes, monocyte-derived, interstitial-type, and Langerhans-type DCs showed a constitutive and abundant expression of CCL18. In comparison to Langerhans cells, interstitial-type DCs produced higher constitutive levels of CCL18. In vivo, topical exposure to the relevant allergen or the superantigen staphylococcal enterotoxin B, resulted in a significant induction of CCL18 in atopic dermatitis patients. Furthermore, in nonatopic NiSO4-sensitized individuals, only relevant allergen but not irritant exposure resulted in the induction of CCL18. Taken together, findings of the present study demonstrate that CCL18 is associated with an atopy/allergy skin phenotype, and is expressed at the interface between the environment and the host by cells constantly screening foreign Ags. Its regulation by allergen exposure and microbial products suggests an important role for CCL18 in the initiation and amplification of atopic skin inflammation.  相似文献   
5.
Dietary intake of long-chain n-3 PUFA is now widely advised for public health and in medical practice. However, PUFA are highly prone to oxidation, producing potentially deleterious 4-hydroxy-2-alkenals. Even so, the impact of consuming oxidized n-3 PUFA on metabolic oxidative stress and inflammation is poorly described. We therefore studied such effects and hypothesized the involvement of the intestinal absorption of 4-hydroxy-2-hexenal (4-HHE), an oxidized n-3 PUFA end-product. In vivo, four groups of mice were fed for 8 weeks high-fat diets containing moderately oxidized or unoxidized n-3 PUFA. Other mice were orally administered 4-HHE and euthanized postprandially versus baseline mice. In vitro, human intestinal Caco-2/TC7 cells were incubated with 4-hydroxy-2-alkenals. Oxidized diets increased 4-HHE plasma levels in mice (up to 5-fold, P < 0.01) compared with unoxidized diets. Oxidized diets enhanced plasma inflammatory markers and activation of nuclear factor kappaB (NF-κB) in the small intestine along with decreasing Paneth cell number (up to -19% in the duodenum). Both in vivo and in vitro, intestinal absorption of 4-HHE was associated with formation of 4-HHE-protein adducts and increased expression of glutathione peroxidase 2 (GPx2) and glucose-regulated protein 78 (GRP78). Consumption of oxidized n-3 PUFA results in 4-HHE accumulation in blood after its intestinal absorption and triggers oxidative stress and inflammation in the upper intestine.  相似文献   
6.
DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation.  相似文献   
7.
Immune responses are initiated by dendritic cells (DC) that form a network comprising different populations. In particular, Langerhans cells (LC) appear as a unique population of cells colonizing epithelial surfaces. We have recently shown that macrophage-inflammatory protein-3alpha/CCL20, a chemokine secreted by epithelial cells, induces the selective migration of LC among DC populations. In this study, we investigated the effects of cytokines on the expression of the CCL20 receptor, CCR6, during differentiation of LC. We found that both IL-4 and IFN-gamma blocked the expression of CCR6 and CCL20 responsiveness at different stages of LC development. The effect of IL-4 was reversible and most likely due to the transient blockade of LC differentiation. In contrast, IFN-gamma-induced CCR6 loss was irreversible and was concomitant to the induction of DC maturation. When other cytokines involved in DC and T cell differentiation were tested, we found that IL-10, unlike IL-4 and IFN-gamma, maintained CCR6 expression. The effect of IL-10 was reversible and upon IL-10 withdrawn, CCR6 was lost concomitantly to final LC differentiation. In addition, IL-10 induced the expression of CCR6 and responsiveness to CCL20 in differentiated monocytes that preserve their ability to differentiate into mature DC. Finally, TGF-beta, which induces LC differentiation, did not alter early CCR6 expression, but triggered its irreversible down-regulation, in parallel to terminal LC differentiation. Taken together, these results suggest that the recruitment of LC at epithelial surface might be suppressed during Th1 and Th2 immune responses, and amplified during regulatory immune responses involving IL-10 and TGF-beta.  相似文献   
8.
Activities of 28 enzymes from central carbon metabolism were measured in pericarp tissue of ripe tomato fruits from field trials with an introgression line (IL) population generated by introgressing segments of the genome of the wild relative Solanum pennellii (LA0716) into the modern tomato cultivar Solanum lycopersicum M82. Enzyme activities were determined using a robotized platform in optimized conditions, where the activities largely reflect the level of the corresponding proteins. Two experiments were analyzed from years with markedly different climate conditions. A total of 27 quantitative trait loci were shared in both experiments. Most resulted in increased enzyme activity when a portion of the S. lycopersicum genome was substituted with the corresponding portion of the genome of S. pennellii. This reflects the change in activity between the two parental genotypes. The mode of inheritance was studied in a heterozygote IL population. A similar proportion of quantitative trait loci (approximately 30%) showed additive, recessive, and dominant modes of inheritance, with only 5% showing overdominance. Comparison with the location of putative genes for the corresponding proteins indicates a large role of trans-regulatory mechanisms. These results point to the genetic control of individual enzyme activities being under the control of a complex program that is dominated by a network of trans-acting genes.  相似文献   
9.
Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D). However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.  相似文献   
10.
Biofiltration of air: a review   总被引:9,自引:0,他引:9  
In this paper we present a review of the existing air pollution control technologies (APCT), when used essentially for the elimination of volatile organic compounds (VOC). The biotechnologies referred to, bioscrubbers, biotrickling filters and biofilters, are also described. A more detailed review of biofiltration is proposed, presenting the most recent and latest developments achieved in the field of bioprocessing. In particular, the influence of the filter bed, the polluted air flowrates, the pollutants, the pressure drop, bed moisture content, temperature, nutrients, pH and the microorganisms are reviewed. Models of biofiltration are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号