首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
2.
M. Foti  S. Dho 《Plant biosystems》2016,150(3):429-435
Tobacco plants under low phosphate exhibited increased total and tap root length, as a result of higher apex activity, but decreased root branching in comparison with the plants grown with high Pi. The possible mechanisms and significance of these alterations, which differed from those typical of stress-induced morphogenetic responses, are discussed.  相似文献   
3.
4.
O Staub  S Dho  P Henry  J Correa  T Ishikawa  J McGlade    D Rotin 《The EMBO journal》1996,15(10):2371-2380
The amiloride-sensitive epithelial sodium channel (ENaC) plays a major role in sodium transport in kidney and other epithelia, and in regulating blood pressure. The channel is composed of three subunits (alphabetagamma) each containing two proline-rich sequences (P1 and P2) at its C-terminus. The P2 regions in human beta and gammaENaC, identical to the rat betagammarENaC, were recently shown to be deleted in patients with Liddle's syndrome (a hereditary form of hypertension), leading to hyperactivation of the channel. Using a yeast two-hybrid screen, we have now identified the rat homologue of Nedd4 (rNedd4) as the binding partner for the P2 regions of beta and gammarENaC. rNedd4 contains a Ca2+ lipid binding (CaLB or C2) domain, three WW domains and a ubiquitin ligase (Hect) domain. Our yeast two-hybrid and in vitro binding studies revealed that the rNedd4-WW domains mediate this association by binding to the P2 regions, which include the PY motifs (XPPXY) of either betarENaC (PPPNY) or gammarENaC (PPPRY). SH3 domains were unable to bind these sequences. Moreover, mutations to Ala of Pro616 or Tyr618 within the betarENaC P2 sequence (to PPANY or PPPNA, respectively), recently described in Liddle's patients, led to abrogation of rNedd4-WW binding. Nedd4-WW domains also bound to the proline-rich C-terminus (containing the sequence PPPAY) of alpharENaC, and endogenous Nedd4 co-immunoprecipitated with alpharENaC expressed in MDCK cells. These results demonstrate that the WW domains of rNedd4 bind to the PY motifs deleted from beta or gammaENaC in Liddle's syndrome patients, and suggest that Nedd4 may be a regulator (suppressor) of the epithelial Na+ channel.  相似文献   
5.
The cell fate determinant Numb is a membrane-associated adaptor protein involved in both development and intracellular vesicular trafficking. It has a phosphotyrosine-binding (PTB) domain and COOH-terminal endocytic-binding motifs for alpha-adaptin and Eps15 homology domain-containing proteins. Four isoforms of Numb are expressed in vertebrates, two of which selectively associate with the cortical membrane. In this study, we have characterized a cortical pool of Numb that colocalizes with AP2 and Eps15 at substratum plasma membrane punctae and cortical membrane-associated vesicles. Green fluorescent protein (GFP)-tagged mutants of Numb were used to identify the structural determinants required for localization. In addition to the previously described association of the PTB domain with the plasma membrane, we show that the AP2-binding motifs facilitate the association of Numb with cortical membrane punctae and vesicles. We also show that agonist stimulation of G protein-coupled receptors (GPCRs) that are linked to phospholipase Cbeta and protein kinase C (PKC) activation causes redistribution of Numb from the cortical membrane to the cytosol. This effect is correlated with Numb phosphorylation and an increase in its Triton X-100 solubility. Live-imaging analysis of mutants identified two regions within Numb that are independently responsive to GPCR-mediated lipid hydrolysis and PKC activation: the PTB domain and a region encompassing at least three putative PKC phosphorylation sites. Our data indicate that membrane localization of Numb is dynamically regulated by GPCR-activated phospholipid hydrolysis and PKC-dependent phosphorylation events.  相似文献   
6.
The cellular concentration of Bcl-xL is among the most important determinants of treatment response and overall prognosis in a broad range of tumors as well as an important determinant of the cellular response to several forms of tissue injury. We and others have previously shown that human Bcl-xL undergoes deamidation at two asparaginyl residues and that DNA-damaging antineoplastic agents as well as other stimuli can increase the rate of deamidation. Deamidation results in the replacement of asparginyl residues with aspartyl or isoaspartyl residues. Thus deamidation, like phosphorylation, introduces a negative charge into proteins. Here we show that the level of human Bcl-xL is constantly modulated by deamidation because deamidation, like phosphorylation in other proteins, activates a conditional PEST sequence to target Bcl-xL for degradation. Additionally, we show that degradation of deamidated Bcl-xL is mediated at least in part by calpain. Notably, we present sequence and biochemical data that suggest that deamidation has been conserved from the simplest extant metazoans through the human form of Bcl-xL, underscoring its importance in Bcl-xL regulation. Our findings strongly suggest that deamidation-regulated Bcl-xL degradation is an important component of the cellular rheostat that determines susceptibility to DNA-damaging agents and other death stimuli.  相似文献   
7.
The conserved adaptor protein Numb is an intrinsic cell fate determinant that functions by antagonizing Notch-mediated signal transduction. The Notch family of membrane receptors controls cell survival and cell fate determination in a variety of organ systems and species. Recent studies have identified a role for mammalian Notch-1 signals at multiple stages of T lymphocyte development. We have examined the role of mammalian Numb (mNumb) as a Notch regulator and cell fate determinant during T cell development. Transgenic overexpression of mNumb under the control of the Lck proximal promoter reduced expression of several Notch-1 target genes, indicating that mNumb antagonizes Notch-1 signaling in vivo. However, thymocyte development, cell cycle, and survival were unperturbed by mNumb overexpression, even though transgenic Numb was expressed at an early stage in thymocyte development (CD4(-)CD8(-)CD3(-) cells that were CD44(+)CD25(+) or CD44(-)CD25(+); double-negative 2/3). Moreover, bone marrow from mNumb transgenic mice showed no defects in thymopoiesis in competitive repopulation experiments. Our results suggest that mNumb functions as a Notch-1 antagonist in immature thymocytes, but that suppression of Notch-1 signaling at this stage does not alter gammadelta/alphabeta or CD4/CD8 T cell fate specification.  相似文献   
8.
The adaptor protein Numb is necessary for the cell fate specification of progenitor cells in the Drosophila nervous system. Numb is evolutionarily conserved and previous studies have provided evidence for a similar functional role during mammalian development. The Numb protein has multiple protein-protein interaction regions including a phosphotyrosine binding (PTB) domain and a carboxy-terminal domain that contains conserved interaction motifs including an EH (Eps15 Homology) domain binding motif and alpha-adaptin binding site. In this study we identify the EHD/Rme-1/Pincher family of endocytic proteins as Numb interacting partners in mammals and Drosophila. The EHD/Rme-1 proteins function in recycling of plasma membrane receptors internalized by both clathrin-mediated endocytosis and a clathrin-independent pathway regulated by ADP ribosylation factor 6 (Arf6). Here we report that Numb colocalizes with endogenous EHD4/Pincher and Arf6 and that Arf6 mutants alter Numb subcellular localization. In addition, we present evidence that Numb has a novel function in endosomal recycling and intracellular trafficking of receptors.  相似文献   
9.
The hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) participates in plasma membrane recycling was tested experimentally. Using CHO cells, we determined the effects of CFTR expression and of elevated intracellular cAMP on exocytosis, measured as the incorporation into the plasma membrane of endosomes pre-labelled with biotinylated wheat-germ agglutinin (WGA). CFTR expression was without effect on the rate of exocytosis. Furthermore, cAMP did not affect endosomal recycling to the plasma membrane in either CFTR-expressing or control cells. These findings suggest that CFTR is not involved in regulating plasma membrane recycling in all cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号