首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   3篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1989年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Objective

Chromovert® Technology is presented as a new cell engineering technology to detect and purify living cells based on gene expression.

Methods

The technology utilizes fluorogenic oligonucleotide signaling probes and flow cytometry to detect and isolate individual living cells expressing one or more transfected or endogenously-expressed genes.

Results

Results for production of cell lines expressing a diversity of ion channel and membrane proteins are presented, including heteromultimeric epithelial sodium channel (αβγ-ENaC), sodium voltage-gated ion channel 1.7 (NaV1.7-αβ1β2), four unique γ-aminobutyric acid A (GABAA) receptor ion channel subunit combinations α1β3γ2s, α2β3γ2s, α3β3γ2s and α5β3γ2s, cystic fibrosis conductance regulator (CFTR), CFTR-Δ508 and two G-protein coupled receptors (GPCRs) without reliance on leader sequences and/or chaperones. In addition, three novel plasmid-encoded sequences used to introduce 3′ untranslated RNA sequence tags in mRNA expression products and differentially-detectable fluorogenic probes directed to each are described. The tags and corresponding fluorogenic signaling probes streamline the process by enabling the multiplexed detection and isolation of cells expressing one or more genes without the need for gene-specific probes.

Conclusions

Chromovert technology is provided as a research tool for use to enrich and isolate cells engineered to express one or more desired genes.

  相似文献   
2.
Russian Journal of Genetics - The genetic diversity of 123 apple accessions from the collection of the research and production base Pushkin and Pavlovsk Laboratories of VIR, including landraces,...  相似文献   
3.
Differential scanning calorimetry was used to examine the effects of cofilin on the thermal unfolding of actin. Stoichiometric binding increases the thermal stability of both G- and F-actin but at sub-saturating concentrations cofilin destabilizes F-actin. At actin:cofilin molar ratios of 1.5-6 the peaks corresponding to stabilized (66-67 degrees C) and destabilized (56-57 degrees C) F-actin are observed simultaneously in the same thermogram. Destabilizing effects of sub-saturating cofilin are highly cooperative and are observed at actin:cofilin molar ratios as low as 100:1. These effects are abolished by the addition of phalloidin or aluminum fluoride. Conversely, at saturating concentrations, cofilin prevents the stabilizing effects of phalloidin and aluminum fluoride on the F-actin thermal unfolding. These results suggest that cofilin stabilizes those actin subunits to which it directly binds, but destabilizes F-actin with a high cooperativity in neighboring cofilin-free regions.  相似文献   
4.
Starvation arrests cultured mammalian cells in the G(1) restriction point of the cell cycle, whereas cancer cells generally lose the regulatory control of the cell cycle. Human lymphocytes, infected with Epstein-Barr virus (EBV), also lose their cell cycle control and produce immortal lymphoblastoid cell lines. We show that during starvation, EBV-lymphoblasts override the cell cycle arrest in the G(1) restriction point and continue cell division. Simultaneously, starvation activates apoptosis in an approximately half of the daughter cells in each cell generation. Continuos cell division and partial removal of cells by apoptosis results in stabilization of viable cell numbers, where a majority of viable cells are in the G(1) phase of the cell cycle. In contrast to starvation, anticancer drug etoposide activates apoptosis indiscriminately in all EBV-lymphoblasts and convertes all the viable cells into apoptotic. We conclude that the removal of surplus cells by apoptosis may represent a survival mechanism of transformed (i.e., cancer) cell population in nutrient restricted conditions, whereas nontransformed mammalian cells are arrested in the G(1) restriction point of the cell cycle.  相似文献   
5.
The protein kinase v-akt murine thymoma viral oncogene homolog (AKT) gene family comprises three human homologs that phosphorylate and inactivate glycogen synthase kinase 3beta (GSK3beta). Studies have reported the genetic association of AKT1 with schizophrenia. Additionally, decreased AKT1 protein expression and the reduced phosphorylation of GSK3beta were reported in this disease, leading to a new theory of attenuated AKT1-GSK3beta signaling in schizophrenia pathogenesis. We have evaluated this theory by performing both genetic and protein expression analyses. A family based association test of AKT1 did not show association with schizophrenia in Japanese subjects. The expression levels of total AKT, AKT1 and phosphorylated GSK3beta detected in the schizophrenic brains from two different brain banks also failed to support the theory. In addition, no attenuated AKT-GSK3beta signaling was observed in the lymphocytes from Japanese schizophrenics, contrasting with previous findings. Importantly, we found that the level of phosphorylated GSK3beta at Ser9 tended to be inversely correlated with postmortem intervals, and that the phosphorylation levels of AKT were inversely correlated with brain pH, issues not assessed in the previous study. These data introduce a note of caution when estimating the phosphorylation levels of GSK3beta and AKT in postmortem brains. Collectively, this study failed to support reduced signaling of the AKT-GSK3beta molecular cascade in schizophrenia.  相似文献   
6.
Hereditary sensory neuropathy type I (HSN1) is a common degenerative disorder of peripheral sensory neurons. HSN1 is caused by mutations in the gene, encoding the long chain base 1 of serine palmitoyltransferase (SPT) [Nat. Genet. 27 (2001) 309]. Here, we show a 44% reduction of SPT activity in transformed lymphocytes from HSN1 patients with mutation T399G in the SPTLC1 gene. However, the decrease in SPT activity had no effect on de novo sphingolipid biosynthesis, cellular sphingolipid content, cell proliferation and death (apoptosis and necrosis). The removal of extracellular sphingolipids did not affect viability of HSN1 cells. We also found no significant difference in whole blood counts, viability, and permeability to Triton X-100 of primary lymphocytes from HSN1 patients. These results suggest that, despite the inhibition of mutant allele, the activity of nonmutant allele of STP may be sufficient for adequate sphingolipid biosynthesis and cell viability. Therefore, the neurodegeneration in HSN1 is likely to be caused by subtler and rather long-term effect(s) of these mutations such as loss of a cell-type selective facet of sphingolipid metabolism and/or function, or perhaps accumulation of toxic species, including abnormal protein(s) as in other neurodegenerations.  相似文献   
7.
Research into neuropsychiatric disorders, including alcohol-related problems, is limited in part by the lack of appropriate animal models. However, the development of new technologies in pathology and molecular biology means that many more questions can be addressed using appropriately stored human brain tissues. The New South Wales Tissue Resource Centre (TRC) in the University of Sydney (Australia) is a human brain bank that can provide tissues to the neuroscience research community studying alcohol-related brain disorders, schizophrenia, depression and bipolar disorders. Carefully standardised operational protocols and integrated information systems means that the TRC can provide high quality, accurately characterised, tissues for research. A recent initiative, the pre-mortem donor program called "Using our Brains", encourages individuals without neuropsychiatric illness to register as control donors, a critical group for all research. Community support for this program is strong with over 2,000 people registering their interest. Discussed herein are the protocols pertaining to this multifaceted facility and the benefits of investment, both scientific and financial, to neuroscience researchers and the community at large.  相似文献   
8.
Cofilin binding induces an allosteric conformational change in subdomain 2 of actin, reducing the distance between probes attached to Gln-41 (subdomain 2) and Cys-374 (subdomain 1) from 34.4 to 31.4 A (pH 6.8) as demonstrated by fluorescence energy transfer spectroscopy. This effect was slightly less pronounced at pH 8.0. In contrast, binding of DNase I increased this distance (35.5 A), a change that was not pH-sensitive. Although DNase I-induced changes in the distance along the small domain of actin were modest, a significantly larger change (38.2 A) was observed when the ternary complex of cofilin-actin-DNase I was formed. Saturation binding of cofilin prevents pyrene fluorescence enhancement normally associated with actin polymerization. Changes in the emission and excitation spectra of pyrene-F actin in the presence of cofilin indicate that subdomain 1 (near Cys-374) assumes a G-like conformation. Thus, the enhancement of pyrene fluorescence does not correspond to the extent of actin polymerization in the presence of cofilin. The structural changes in G and F actin induced by these actin-binding proteins may be important for understanding the mechanism regulating the G-actin pool in cells.  相似文献   
9.
Epstein-Barr virus (EBV) is associated with a number of human malignancies. In vitro EBV infection transforms human lymphocytes into proliferating cell lines (EBV-lymphocytes). Etoposide, topoisomerase II inhibitor, induced apoptosis in EBV-lymphocytes as shown by expression of phosphatidylserine, loss of DNA and mitochondrial membrane potential, and cell shrinkage. In contrast, those cells, which had yet to display signs of apoptosis, grew to exceed their normal size. These EBV-lymphocytes had unusual cellular and nuclear morphology, higher mitochondrial membrane potential, increased expression of proteins and an amount of DNA that exceeded the maximum DNA content in normal EBV-lymphocytes by more than two-fold. Application of the caspase inhibitor Z-VAD-FMK in the presence of etoposide increased the numbers of such large cells. This data suggests that inhibition of topoisomerase II by etoposide does not inhibit DNA synthesis but rather overrides the G2/M check points of the cell cycle, resulting in cells growth over their genetically determined size. This may trigger apoptosis to eliminate cells, which failed to complete mitosis.  相似文献   
10.
The hip joints in 10 children were investigated with computerized tomography (CT). The method permitted the determination of the geometry of hip joints. It was used for a study of the pathogenesis of aseptic necrosis at early stages of its development in children with congenital dysplasia of the hip joint at early stages of disease. CT made it possible to establish anteversion of the cotyloid cavity, its degree, the shape and structure of the anterior and posterior wall of the cotyloid cavity, and a shift of the proximal hip end anteriorly in combination with the above changes in the whole hip joint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号