首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70217篇
  免费   6051篇
  国内免费   138篇
  2022年   597篇
  2021年   1525篇
  2020年   941篇
  2019年   1234篇
  2018年   1482篇
  2017年   1230篇
  2016年   1888篇
  2015年   3073篇
  2014年   3379篇
  2013年   4014篇
  2012年   5136篇
  2011年   4708篇
  2010年   3139篇
  2009年   2633篇
  2008年   3811篇
  2007年   3713篇
  2006年   3402篇
  2005年   3135篇
  2004年   3004篇
  2003年   2797篇
  2002年   2759篇
  2001年   1356篇
  2000年   1178篇
  1999年   1164篇
  1998年   798篇
  1997年   668篇
  1996年   558篇
  1995年   518篇
  1994年   445篇
  1993年   504篇
  1992年   763篇
  1991年   733篇
  1990年   668篇
  1989年   602篇
  1988年   528篇
  1987年   510篇
  1986年   465篇
  1985年   501篇
  1984年   523篇
  1983年   434篇
  1982年   374篇
  1981年   375篇
  1980年   342篇
  1979年   380篇
  1978年   348篇
  1977年   366篇
  1976年   333篇
  1975年   326篇
  1974年   319篇
  1973年   323篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.  相似文献   
2.
Jan Scheirs  Luc De Bruyn 《Oikos》2002,97(1):139-144
The role of top-down forces in host choice evolution of phytophagous arthropods is the subject of a vividly animated debate. Empirical evidence for the evolutionary role of top-down forces comes from studies showing that phytophagous arthropods prefer hosts that entail enemy-free space. The aim of this paper is to draw the attention of plant–arthropod researchers to the potentially, temporally variable nature of third trophic level effects. We show that this aspect is largely neglected in studies on enemy-free space, despite the fact that relative enemy impact varies seasonally among plants in at least some studies. We conclude that rigorous testing of the enemy-free space hypothesis can only be performed when within and between season variation in higher trophic level effects is taken into account.  相似文献   
3.
4.
5.
6.
Myoglobin (Mb) is the classic vertebrate oxygen-binding protein present in aerobic striated muscles. It functions principally in oxygen delivery and provides muscle with its characteristic red colour. Members of the Antarctic icefish family (Channichthyidae) are widely thought to be extraordinary for lacking cardiac Mb expression, a fact that has been attributed to their low metabolic rate and unusual evolutionary history. Here, we report that cardiac Mb deficit, associated with pale heart colour, has evolved repeatedly during teleost evolution. This trait affects both gill- and air-breathing species from temperate to tropical habitats across a full range of salinities. Cardiac Mb deficit results from total pseudogenization in three-spined stickleback and is associated with a massive reduction in mRNA level in two species that evidently retain functional Mb. The results suggest that near or complete absence of Mb-assisted oxygen delivery to heart muscle is a common facet of teleost biodiversity, even affecting lineages with notable oxygen demands. We suggest that Mb deficit may affect how different teleost species deal with increased tissue oxygen demands arising under climate change.  相似文献   
7.
8.
The aim of this work was the evaluation of fluorescence ITS-PCR (f-ITS) as a molecular tool to analyze the microbial community involved in the biodeterioration of cultural heritage surfaces. As a case study we analyzed by f-ITS ninety-two bacterial strains isolated from a medieval fresco and the surrounding air environment. The internal transcribed spacer between the 16S and 23S rRNA genes was amplified, and then the fluorescently labeled PCR products were separated by capillary electrophoresis. Bacterial strains were identified by 16S rDNA sequencing. The f-ITS electropherograms showed different profiles coherent with the affiliation of the strains at the genus and species levels. Among the isolates obtained from the fresco surface, those belonging to the genus Bacillus were the most prevailing exhibiting 8 different f-ITS profiles. The airborne bacilli exhibited only 2 of these 8 profiles. Staphylococcus were mostly isolated from air and produced 4 different profiles. Pseudomonas isolates presented 3 different profiles, and one of them was typical of Pseudomonas putida. Members of the other genera produced their distinctive profiles. Our results show that f-ITS is a promising molecular tool for the rapid selection and clustering of strains isolated from different sources.  相似文献   
9.
10.
Insulin-like growth factor-1 (IGF-1) is a serum protein which unexpectedly folds to yield two stable tertiary structures with different disulphide connectivities; native IGF-1 [18-61,6-48,47-52] and IGF-1 swap [18-61,6-47, 48-52]. Here we demonstrate in detail the biological properties of recombinant human native IGF-1 and IGF-1 swap secreted from Saccharomyces cerevisiae. IGF-1 swap had a approximately 30 fold loss in affinity for the IGF-1 receptor overexpressed on BHK cells compared with native IGF-1.The parallel increase in dose required to induce negative cooperativity together with the parallel loss in mitogenicity in NIH 3T3 cells implies that disruption of the IGF-1 receptor binding interaction rather than restriction of a post-binding conformational change is responsible for the reduction in biological activity of IGF-1 swap. Interestingly, the affinity of IGF-1 swap for the insulin receptor was approximately 200 fold lower than that of native IGF-1 indicating that the binding surface complementary to the insulin receptor (or the ability to attain it) is disturbed to a greater extent than that to the IGF-1 receptor. A 1.0 ns high-temperature molecular dynamics study of the local energy landscape of IGF-1 swap resulted in uncoiling of the first A-region alpha-helix and a rearrangement in the relative orientation of the A- and B-regions. The model of IGF-1 swap is structurally homologous to the NMR structure of insulin swap and CD spectra consistent with the model are presented. However, in the model of IGF-1 swap the C-region has filled the space where the first A-region alpha-helix has uncoiled and this may be hindering interaction of Val44 with the second insulin receptor binding pocket.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号