首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
The bioprocessing industry relies on packed-bed column chromatography as its primary separation process to attain the required high product purities and fulfill the strict requirements from regulatory bodies. Conventional column packing methods rely on flow packing and/or mechanical compression. In this work, the application of ultrasound and mechanical vibration during packing was studied with respect to packing density and homogeneity. We investigated two widely used biochromatography media, incompressible ceramic hydroxyapatite, and compressible polymethacrylate-based particles, packed in a laboratory-scale column with an inner diameter of 50 mm. It was shown that ultrasonic irradiation led to reduced particle segregation during sedimentation of a homogenized slurry of polymethacrylate particles. However, the application of ultrasound did not lead to an improved microstructure of already packed columns due to the low volumetric energy input (~152 W/L) caused by high acoustic reflection losses. In contrast, the application of pneumatic mechanical vibration led to considerable improvements. Flow-decoupled axial linear vibration was most suitable at a volumetric force output of ~1,190 N/L. In the case of the ceramic hydroxyapatite particles, a 13% further decrease of the packing height was achieved and the reduced height equivalent to a theoretical plate (rHETP) was decreased by 44%. For the polymethacrylate particles, a 18% further packing consolidation was achieved and the rHETP was reduced by 25%. Hence, it was shown that applying mechanical vibration resulted in more efficiently packed columns. The application of vibration furthermore is potentially suitable for in situ elimination of flow channels near the column wall.  相似文献   
2.
This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a car painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.Many branches of industry produce waste gases which contain odorous organic and inorganic components. Apart from the conventional thermal and physicochemical techniques for removal of pollutants from exhaust air, biological waste gas treatment is becoming more and more important. This kind of treatment is advantageous in cases in which the recovery of the components (e.g., absorption in liquids and adsorption in solids) or the utilization of a thermal process (thermal or catalytic combustion) is not economical. Today three different process variations for biological waste gas treatment are used: biofilters, bioscrubbers, and trickle-bed bioreactors. In biofilters and trickle-bed reactors, the pollutant-degrading microorganisms are immobilized on a carrier material, whereas in bioscrubbers the microorganisms are dispersed in the liquid phase. Biofilters and bioscrubbers are preferred in industry, while biofilters are common in compost production and sewage plants (10).Biological waste gas treatment has a long tradition. Already in 1953, a soil system was employed for the treatment of odorous sewer exhaust gases in Long Beach, Calif. (25), and although up to now a lot of efforts have been funneled into process engineering (14, 17, 18, 24), current knowledge of the involved microorganisms is still very limited. Diversity of the microbial communities in the bioreactors for the exhaust gas purification have mostly been analyzed by culture-dependent methods (9, 12, 28, 31). However, there is a large discrepancy between the total (direct) microscopic cell counts and viable plate counts in many ecosystems and every cultivation medium selects for certain microorganisms. Therefore, cultivation-based studies of bacterial populations may give wrong impressions of the actual community structure in an ecosystem (35). A possible means of avoiding qualitative and quantitative errors in the analysis of microbial community structure in complex ecosystems is the use of fluorescently labeled, rRNA-targeted oligonucleotides (5) for the in situ identification and enumeration of bacteria. This method has already been used successfully in complex microbial communities, such as multispecies biofilms (6, 22, 26), trickling filters (27), and activated sludge (37).The current study was performed with a laboratory-scale trickle-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the inoculation of the bioreactor was an enrichment prepared in a fermentor which was itself started with a wastewater sample from a car painting factory as the inoculum and Solvesso100 as the sole carbon source. The goal of our study was to use for the first time fluorescent in situ hybridization (FISH) to investigate the microbial community structure and dynamics in the fermentor and the bioreactor during start-up. One of the open questions was whether the fermentor enrichment, which is done in suspension, indeed selects for those bacteria that later are immobilized in the bioreactor. In the course of this study, new 16S as well as 23S rRNA-targeted probes for phylogenetic groups within the beta subclass of the class Proteobacteria have been developed and applied in order to obtain a higher taxonomic resolution of the molecular techniques. The molecular data were compared to those obtained by traditional cultivation-dependent techniques.  相似文献   
3.
4.
The influence of the product inhibition by dihydroxyacetone (DHA) on Gluconobacter oxydans for a novel semi-continuous two-stage repeated-fed-batch process was examined quantitatively. It was shown that the culture was able to grow up to a DHA concentration of 80 kg m−3 without any influence of product inhibition. The regeneration capability of the reversibly product inhibited culture from a laboratory-scale bioreactor system was observed up to a DHA concentration of about 160 kg m−3. At higher DHA concentrations, the culture was irreversibly product inhibited. However, due to the robust membrane-bound glycerol dehydrogenase of G. oxydans, product formation was still active for a prolonged period of time. The reachable maximum final DHA concentration was as high as 220 kg m−3. The lag phases for growth increased exponentially with increasing DHA threshold values of the first reactor stage. These results correlated well with fluorescence in situ hybridization (FISH) measurements confirming that the number of active cells decreased exponentially with increasing DHA concentrations.  相似文献   
5.
New proteomics methods are required for targeting and identification of subsets of a proteome in an activity-based fashion. Here, we report the first gel-free, mass spectrometry-based strategy for mechanism-based profiling of retaining beta-endoglycosidases in complex proteomes. Using a biotinylated, cleavable 2-deoxy-2-fluoroxylobioside inactivator, we have isolated and identified the active-site peptides of target retaining beta-1,4-glycanases in systems of increasing complexity: pure enzymes, artificial proteomes, and the secreted proteome of the aerobic mesophilic soil bacterium Cellulomonas fimi. The active-site peptide of a new C. fimi beta-1,4-glycanase was identified in this manner, and the peptide sequence, which includes the catalytic nucleophile, is highly conserved among glycosidase family 10 members. The glycanase gene (GenBank accession number DQ146941) was cloned using inverse PCR techniques, and the protein was found to comprise a catalytic domain that shares approximately 70% sequence identity with those of xylanases from Streptomyces sp. and a family 2b carbohydrate-binding module. The new glycanase hydrolyzes natural and artificial xylo-configured substrates more efficiently than their cello-configured counterparts. It has a pH dependence very similar to that of known C. fimi retaining glycanases.  相似文献   
6.
7.

Aims

This study sought to characterize global and regional right ventricular (RV) myocardial function in patients with Takotsubo cardiomyopathy (TC) using 2D strain imaging.

Methods

We compared various parameters of RV and left ventricular (LV) systolic function between 2 groups of consecutive patients with TC at initial presentation and upon follow-up. Group 1 had RV involvement and group 2 did not have RV involvement.

Results

At initial presentation, RV peak systolic longitudinal strain (RVPSS) and RV fractional area change (RVFAC) were significantly lower in group 1 (−13.2±8.6% vs. −21.8±5.4%, p = 0.001; 30.7±9.3% vs. 43.5±6.3%, p = 0.001) and improved significantly upon follow-up. Tricuspid annular plane systolic excursion (TAPSE) did not differ significantly at initial presentation between both groups (14.8±4.1 mm vs. 17.9±3.5 mm, p = 0.050). Differences in regional systolic RV strain were only observed in the mid and apical segments. LV ejection fraction (LVEF) and LV global strain were significantly lower in group 1 (36±8% vs. 46±10%, p = 0.006 and −5.5±4.8% vs. −10.2±6.2%, p = 0.040) at initial presentation. None of the parameters were significantly different between the 2 groups upon follow-up. A RVPSS cut-off value of >−19.1% had a sensitivity of 85% and a specificity of 71% to discriminate between the 2 groups.

Conclusion

In TC, RVFAC, RVPSS, LVEF and LV global strain differed significantly between patients with and without RV dysfunction, whereas TAPSE did not. 2 D strain imaging was feasible for the assessment of RV dysfunction in TC and could discriminate between patients with and without RV involvement in a clinically meaningful way.  相似文献   
8.
9.
10.
Microbial exposure may direct the immune system away from allergic-type responses, but until now probiotic interventions have had limited success in the prevention and treatment of allergic diseases. In this study, a novel probiotic mixture was specifically created based on preliminary in vitro investigations on pollen-induced immune responses. A mixture with Lactobacillus rhamnosus GR-1 and a novel fecal Bifidobacterium adolescentis isolate was formulated into a yogurt and tested for its effects in 36 subjects with allergic rhinitis over 2 pollen seasons in a double-blind, placebo-controlled trial. The new formulation was well tolerated, but did not have significant effects on the quality of life scores, use of antihistamines, or eosinophil cationic protein concentration in nasal lavage. However, at the end of the grass pollen season, serum IL-10 and IL-12 levels were increased in the probiotic group compared to the controls. During the ragweed season, the serum TGF-β levels were significantly higher in the probiotic group than in the controls. In conclusion, the novel probiotic formulation had potentially desirable effects on the cytokine profile of patients with allergic rhinitis, but provided few clinical benefits. The study highlights the challenges in designing efficient immunomodulatory probiotic therapies based upon in vitro findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号