首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2015年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  1984年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
A better understanding of malaria persistence in highly seasonal environments such as highlands and desert fringes requires identifying the factors behind the spatial reservoir of the pathogen in the low season. In these ‘unstable’ malaria regions, such reservoirs play a critical role by allowing persistence during the low transmission season and therefore, between seasonal outbreaks. In the highlands of East Africa, the most populated epidemic regions in Africa, temperature is expected to be intimately connected to where in space the disease is able to persist because of pronounced altitudinal gradients. Here, we explore other environmental and demographic factors that may contribute to malaria''s highland reservoir. We use an extensive spatio-temporal dataset of confirmed monthly Plasmodium falciparum cases from 1995 to 2005 that finely resolves space in an Ethiopian highland. With a Bayesian approach for parameter estimation and a generalized linear mixed model that includes a spatially structured random effect, we demonstrate that population density is important to disease persistence during the low transmission season. This population effect is not accounted for in typical models for the transmission dynamics of the disease, but is consistent in part with a more complex functional form of the force of infection proposed by theory for vector-borne infections, only during the low season as we discuss. As malaria risk usually decreases in more urban environments with increased human densities, the opposite counterintuitive finding identifies novel control targets during the low transmission season in African highlands.  相似文献   
2.
3.

Background and Aims

Nitrogen-use efficiency (NUE) of cereals needs to be improved by nitrogen (N) management, traditional plant breeding methods and/or biotechnology, while maintaining or, optimally, increasing crop yields. The aims of this study were to compare spring-barley genotypes grown on different nitrogen levels in field and growth-chamber conditions to determine the effects on N uptake (NUpE) and N utilization efficiency (NUtE) and ultimately, NUE.

Methods

Morphological characteristics, seed yield and metabolite levels of 12 spring barley (Hordeum vulgare) genotypes were compared when grown at high and low nitrogen levels in field conditions during the 2007 and 2008 Canadian growing seasons, and in potted and hydroponic growth-chamber conditions. Genotypic NUpE, NUtE and NUE were calculated and compared between field and growth-chamber environments.

Key Results

Growth chamber and field tests generally showed consistent NUE characteristics. In the field, Vivar, Excel and Ponoka, showed high NUE phenotypes across years and N levels. Vivar also had high NUE in growth-chamber trials, showing NUE across complex to simplistic growth environments. With the high NUE genotypes grown at low N in the field, NUtE predominates over NUpE. N metabolism-associated amino acid levels were different between roots (elevated glutamine) and shoots (elevated glutamate and alanine) of hydroponically grown genotypes. In field trials, metabolite levels were different between Kasota grown at high N (elevated glutamine) and Kasota at low N plus Vivar at either N condition.

Conclusions

Determining which trait(s) or gene(s) to target to improve barley NUE is important and can be facilitated using simplified growth approaches to help determine the NUE phenotype of various genotypes. The genotypes studied showed similar growth and NUE characteristics across field and growth-chamber tests demonstrating that simplified, low-variable growth environments can help pinpoint genetic targets for improving spring barley NUE.  相似文献   
4.
Verticillium spp. are destructive soilborne fungal pathogens that cause vascular wilt diseases in a wide range of plant species. Verticillium wilts are particularly notorious, and genetic resistance in crop plants is the most favorable means of disease control. In a gain-of-function screen using an activation-tagged Arabidopsis mutant collection, we identified four mutants, A1 to A4, which displayed enhanced resistance toward the vascular wilt species Verticillium dahliae, V. albo-atrum and V. longisporum but not to Fusarium oxysporum f. sp. raphani. Further testing revealed that mutant A2 displayed enhanced Ralstonia solanacearum resistance, while mutants A1 and A3 were more susceptible toward Pseudomonas syringae pv. tomato. Identification of the activation tag insertion site in the A1 mutant revealed an insertion in close proximity to the gene encoding AHL19, which was constitutively expressed in the mutant. AHL19 knock-out alleles were found to display enhanced Verticillium susceptibility whereas overexpression of AHL19 resulted in enhanced Verticillium resistance, showing that AHL19 acts as a positive regulator of plant defense.  相似文献   
5.
Two series of pyridine derivatives were synthesised and evaluated for their in vivo anti-malarial activity against Plasmodium berghei. The anti-malarial activity was determined in vivo by applying 4-day standard suppressive test using chloroquine (CQ)-sensitive P. berghei ANKA strain-infected mice. Compounds 2a, 2g and 2h showed inhibition of the parasite multiplication by 90, 91 and 80%, respectively, at a dose level of 50 μmol/kg. Moreover, The most active compounds (2a, 2g and 2h) were tested in vitro against CQ-resistant Plasmodium falciparum RKL9 strains where compound 2g showed promising activity with IC(50)?=?0.0402 μM. The compounds were non-toxic at 300 and 100?mg/kg through the oral and parenteral routes, respectively. The docking pose of the most active compounds (2a, 2g and 2h) in the active site of dihydrofolate reductase enzyme revealed several hydrogen and hydrophobic interactions that contribute to the observed anti-malarial activities.  相似文献   
6.
B Damtew  B Lewandowski 《CMAJ》1984,130(12):1573-1574
Complications secondary to intravenous alimentation are rare but potentially lethal. Massive bilateral pleural effusions and a pericardial effusion developed in a patient receiving prolonged intravenous alimentation. Severe respiratory distress and renal failure ensued. He recovered with appropriate treatment.  相似文献   
7.
8.
9.
A key virulence strategy of bacterial pathogens is the delivery of multiple pathogen effector proteins into host cells during infection. The Hrp outer protein Q (HopQ1) effector from Pseudomonas syringae pv tomato (Pto) strain DC3000 is conserved across multiple bacterial plant pathogens. Here, we investigated the virulence function and host targets of HopQ1 in tomato (Solanum lycopersicum). Transgenic tomato lines expressing dexamethasone-inducible HopQ1 exhibited enhanced disease susceptibility to virulent Pto DC3000, the Pto ΔhrcC mutant, and decreased expression of a pathogen-associated molecular pattern-triggered marker gene after bacterial inoculation. HopQ1-interacting proteins were coimmunoprecipitated and identified by mass spectrometry. HopQ1 can associate with multiple tomato 14-3-3 proteins, including TFT1 and TFT5. HopQ1 is phosphorylated in tomato, and four phosphorylated peptides were identified by mass spectrometry. HopQ1 possesses a conserved mode I 14-3-3 binding motif whose serine-51 residue is phosphorylated in tomato and regulates its association with TFT1 and TFT5. Confocal microscopy and fractionation reveal that HopQ1 exhibits nucleocytoplasmic localization, while HopQ1 dephosphorylation mimics exhibit more pronounced nuclear localization. HopQ1 delivered from Pto DC3000 was found to promote bacterial virulence in the tomato genotype Rio Grande 76R. However, the HopQ1(S51A) mutant delivered from Pto DC3000 was unable to promote pathogen virulence. Taken together, our data demonstrate that HopQ1 enhances bacterial virulence and associates with tomato 14-3-3 proteins in a phosphorylation-dependent manner that influences HopQ1’s subcellular localization and virulence-promoting activities in planta.The ability to detect and mount a defense response against pathogenic microbes is vital for plant survival. Plants rely on both passive and active defenses to ward off microbial pathogens. Physical barriers, such as the cell wall and cuticle, as well as chemical barriers provide a first line of defense against microbial colonization. Unlike animals, plants do not possess a circulating immune system and rely on innate immunity for active defenses against microbial pathogens (Spoel and Dong, 2012). Plants use surface-localized receptors to recognize conserved pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin, resulting in pattern-triggered immunity (PTI; Zipfel et al., 2006). Plants also use primarily intracellular nucleotide-binding domain, Leu-rich repeat containing (NLR) immune receptors to recognize pathogen effectors delivered into host cells during infection (Spoel and Dong, 2012). NLR activation results in effector-triggered immunity (ETI). A signature of ETI is the hypersensitive response (HR), a form of programmed cell death occurring at the site of infection.In order to cause disease and suppress host defense responses, gram-negative bacterial pathogens deliver effector proteins into host cells via the type III secretion system (TTSS). Plant pathogenic bacteria deliver a large number (20–40) of effectors into host cells during infection (Cui et al., 2009). Collectively, effectors are required for bacterial virulence (Lindgren et al., 1986). However, knockouts affecting individual effectors frequently have phenotypes that are subtle, likely due to functional redundancy (Cunnac et al., 2011). Alternatively, individual effectors may play an important role in bacterial survival under conditions that are not typically analyzed in the laboratory or act cooperatively with one another. Progress in understanding individual effectors’ contributions to virulence has been made by generating transgenic plants that express effectors. Multiple effectors have been shown to suppress plant innate immunity and promote bacterial growth when either transiently or stably expressed in plants (Jamir et al., 2004; Guo et al., 2009). Effector expression can also result in avirulent phenotypes when a plant NLR receptor recognizes a cognate effector and mounts an HR. Such an HR phenotype can be used to dissect important effector domains required for plant recognition and enzymatic activity.Elucidating effector targets and enzymatic activity is necessary in order to understand how they act to subvert plant immune responses and can provide elegant insight into biological processes. Significant progress has been made in elucidating the enzymatic activity of a subset of effectors. Some of the most well-characterized effectors come from Pseudomonas syringae pv tomato (Pto), the causal agent of bacterial speck on tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). Multiple effectors can suppress immune responses by directly targeting PAMP receptors (AvrPto and AvrPtoB) or by interfering with downstream signaling processes (AvrB, AvrPphB, and HopAI1; Cui et al., 2009, 2010). The HopU1 effector interferes with RNA metabolism (Fu et al., 2007), and the HopI1 effector targets heat-shock proteins in the plant chloroplast (Jelenska et al., 2010).14-3-3s are conserved eukaryotic proteins that bind a diverse set of phosphorylated client proteins, typically at one of three distinct 14-3-3 binding motifs (Bridges and Moorhead, 2005). There are common recognition motifs for 14-3-3 proteins that contain phosphorylated Ser or Thr residues, but binding to nonphosphorylated ligands and to proteins lacking consensus motifs has been reported (Henriksson et al., 2002; Smith et al., 2011). The 14-3-3 mode I consensus motif is RXXpS/pTX and that of mode II is RXXXpS/pTXP, where X can be any amino acid and p indicates the site of phosphorylation (Smith et al., 2011). 14-3-3 proteins can also bind to the extreme C termini of proteins at the RXXpS/pTX-COOH mode III consensus motif (Smith et al., 2011). Interaction with 14-3-3s can regulate protein activity by influencing client subcellular localization, structure, and protein-protein interactions (Bridges and Moorhead, 2005). Recently, the Xanthomonas campestris XopN effector was shown to target tomato 14-3-3 isoforms, which facilitates its interaction with the tomato atypical receptor kinase1 and suppresses PTI (Kim et al., 2009; Taylor et al., 2012). Other 14-3-3s have also been shown to play a role during plant defense responses. The tomato TFT7 14-3-3 interacts with multiple mitogen-activated protein kinases to positively regulate HR induced by ETI (Oh and Martin, 2011). The Arabidopsis 14-3-3 isoform λ interacts with the RPW8.2 powdery mildew receptor and is required for complete RPW8.2-mediated resistance (Yang et al., 2009).In this study, we investigated the function of the Pto HopQ1 (for Hrp outer protein Q [also known as HopQ1-1]) effector in tomato. HopQ1 is an active effector that is transcribed and translocated via the TTSS (Schechter et al., 2004). HopQ1 induces cell death when expressed in Nicotiana benthamiana and therefore contributes to differences in host range in P. syringae pathovars on Nicotiana spp. (Wei et al., 2007; Ferrante et al., 2009). HopQ1 was also reported to slightly enhance disease symptoms (approximately 0.2 log) and bacterial virulence on bean (Phaseolus vulgaris) when expressed from P. syringae pv tabaci (Ferrante et al., 2009). Here, we generated transgenic tomato plants expressing HopQ1 that exhibited enhanced susceptibility to virulent Pto as well as the Pto ΔhrcC mutant. HopQ1-interacting proteins were identified from tomato using coimmunoprecipitations coupled with mass spectrometry. Multiple 14-3-3 proteins were identified. HopQ1 possesses a 14-3-3 binding motif whose Ser residue is phosphorylated in planta and affects its association with the tomato 14-3-3s TFT1 and TFT5. Mutation of HopQ1’s 14-3-3 binding motif affected its ability to promote bacterial virulence. Taken together, these results indicate that phosphorylation and subsequent interaction with tomato 14-3-3 proteins affect HopQ1’s virulence-promoting activities and subcellular localization.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号