首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   19篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   10篇
  2012年   21篇
  2011年   14篇
  2010年   11篇
  2009年   7篇
  2008年   7篇
  2007年   13篇
  2006年   10篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   6篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1957年   1篇
排序方式: 共有200条查询结果,搜索用时 31 毫秒
1.
2.
Tegumental hexose transporters have been kinetically characterized in mated and separated male and female Schistosoma mansoni 8-12 wk postinfection. Significant gender-specific differences in Km and Vmax were observed. In mated males, the estimated constants (mean +/- SE) were: Km = 0.63 +/- 0.31 mM, Vmax = 0.93 +/- 0.44 nmol/mg worm water/min, and the Kd = 0.25 +/- 0.09 microliter/mg worm water/min. In mated females the kinetics were: Km = 0.99 +/- 0.40 mM, Vmax = 1.22 +/- 0.42 nmol/mg worm water/min, and Kd = 0.60 +/- 0.14 microliter/mg worm water/min. The influx of 2-deoxy-D-glucose and 3-O-methylglucose has been similarly characterized; these analogs share the same glucose transporter in male and female schistosomes. 2-Deoxy-D-glucose has a higher affinity, and 3-O-methylglucose a lower affinity, than does glucose. Because mated male schistosomes supply glucose to female partners, similarities between the free glucose concentration of the male and the affinity of the transporter determined for mated female schistosomes suggest that male-to-female transfer may be a potentially rate-limiting step in glucose utilization by the female. Permeability x surface are (PS) products and Vmax/Km ratios were significantly elevated in mated schistosomes, suggesting that the transporter is primarily localized to the dorsal surface of the male. Gender- and mating-specific analyses of PS products indicate that tegumental permeability to glucose is significantly increased in mated schistosomes, and compares very favorably to that of the host liver.  相似文献   
3.
Mine wastewater often contains dissolved metals at concentrations too low to be economically extracted by existing technologies, yet too high for environmental discharge. The most common treatment is chemical precipitation of the dissolved metals using limestone and subsequent disposal of the sludge in tailing impoundments. While it is a cost-effective solution to meet regulatory standards, it represents a lost opportunity. In this study, we engineered Escherichia coli to overexpress its native NikABCDE transporter and a heterologous metallothionein to capture nickel at concentrations in local effluent streams. We found the engineered strain had a 7-fold improvement in the bioaccumulation performance for nickel compared to controls, but also observed a drastic decrease in cell viability due to metabolic burden or inducer (IPTG) toxicity. Growth kinetic analysis revealed the IPTG concentrations used based on past studies lead to growth inhibition, thus delineating future avenues for optimization of the engineered strain and its growth conditions to perform in more complex environments.  相似文献   
4.
Assignment of human pancreatic lipase gene (PNLIP) to chromosome 10q24-q26.   总被引:3,自引:0,他引:3  
Human pancreatic lipase (EC 3.1.1.3) is a 56-kDa protein secreted by the acinar pancreas and is essential for the hydrolysis and absorption of long-chain triglyceride fatty acids in the intestine. In vivo, the 12-kDa protein cofactor, colipase, is required to anchor lipase to the surface of lipid micelles, counteracting the destabilizing influence of bile salts. Southern blot analysis, using a pancreatic lipase cDNA to probe DNA from mouse-human somatic cell hybrids, indicated that the pancreatic lipase gene (PNLIP) resides on human chromosome 10. In situ hybridization to human metaphase chromosomes confirmed the cell hybrid results and further localized the gene to the 10q24-qter region with the strongest peak at q26.1.  相似文献   
5.
6.
Cultured bovine capillary endothelial (BCE) cells produce low levels of collagenolytic activity and significant amounts of the serine protease plasminogen activator (PA). When grown in the presence of nanomolar quantities of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), BCE cells produced 5-15 times more collagenolytic activity and 2-10 times more PA than untreated cells. The enhanced production of these enzymes was dependent on the dose of TPA used, with maximal response at 10(-7) to 10(-8) M. Phorbol didecanoate (PDD), an analog of TPA which is an active tumor promoter, also increased protease production. 4-O-methyl-TPA and 4α-PDD, two analogs of TPA which are inactive as tumor promoters, had no effect on protease production. Increased PA and collagenase activities were detected within 7.5 and 19 h, respectively, after the addition of TPA. The TPA-stimulated BCE cells synthesized a urokinase-type PA and a typical vertebrate collagenase. BCE cells were compared with bovine aortic endothelial (BAE) cells and bovine embryonic skin (BES) fibroblasts with respect to their production of protease in response to TPA. Under normal growth conditions, low levels of collagenolyic activity were detected in the culture fluids from BCE, BAE, and BES cells. BCE cells produced 5-13 times the basal levels of collagenolytic activity in response to TPA, whereas BAE cells and BES fibroblasts showed a minimal response to TPA. Both BCE and BAE cells exhibited relatively high basal levels of PA, the production of which was stimulated approximately threefold by the addition of TPA. The observation that BCE cells and not BAE cells produced high levels of both PA and collagenase activities in response to TPA demonstrates a significant difference between these two types of endothelial cells and suggests that the enhanced detectable activities are a property unique to bovine capillary and microvessel and endothelial cells.  相似文献   
7.
8.
Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.  相似文献   
9.
10.
XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号