首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   5篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   6篇
  2019年   7篇
  2018年   6篇
  2016年   1篇
  2015年   7篇
  2014年   7篇
  2013年   9篇
  2012年   12篇
  2011年   5篇
  2010年   11篇
  2009年   5篇
  2008年   7篇
  2007年   12篇
  2006年   4篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有144条查询结果,搜索用时 31 毫秒
1.
We have addressed the role of the F-box helicase 1 (Fbh1) protein during genome maintenance in mammalian cells. For this, we generated two mouse embryonic stem cell lines deficient for Fbh1: one with a homozygous deletion of the N-terminal F-box domain (Fbh1f/f), and the other with a homozygous disruption (Fbh1?/?). Consistent with previous reports of Fbh1-deficiency in vertebrate cells, we found that Fbh1?/? cells show a moderate increase in Rad51 localization to DNA damage, but no clear defect in chromosome break repair. In contrast, we found that Fbh1f/f cells show a decrease in Rad51 localization to DNA damage and increased cytoplasmic localization of Rad51. However, these Fbh1f/f cells show no clear defects in chromosome break repair. Since some Rad51 partners and F-box-associated proteins (Skp1-Cul1) have been implicated in progression through mitosis, we considered whether Fbh1 might play a role in this process. To test this hypothesis, we disrupted mitosis using catalytic topoisomerase II inhibitors (bisdioxopiperazines), which inhibit chromosome decatenation. We found that both Fbh1f/f and Fbh1?/? cells show hypersensitivity to topoisomerase II catalytic inhibitors, even though the degree of decatenation stress was not affected. Furthermore, following topoisomerase II catalytic inhibition, both Fbh1-deficient cell lines show substantial defects in anaphase separation of chromosomes. These results indicate that Fbh1 is important for restoration of normal mitotic progression following decatenation stress.  相似文献   
2.
It is often suggested that gelatinous zooplankton may benefit from anthropogenic pressures of all kinds and in particular from climate change. Large pelagic tunicates, for example, are likely to be favored over other types of macrozooplankton due to their filter-feeding mode, which gives them access to small preys thought to be less affected by climate change than larger preys. In this study, we provide model-based estimate of potential community changes in macrozooplankton composition and estimate for the first time their effects on benthic food supply and on the ocean carbon cycle under two 21st-century climate-change scenarios. Forced with output from an Earth System Model climate projections, our ocean biogeochemical model simulates a large reduction in macrozooplankton biomass in response to anthropogenic climate change, but shows that gelatinous macrozooplankton are less affected than nongelatinous macrozooplankton, with global biomass declines estimated at −2.8% and −3.5%, respectively, for every 1°C of warming. The inclusion of gelatinous macrozooplankon in our ocean biogeochemical model has a limited effect on anthropogenic carbon uptake in the 21st century, but impacts the projected decline in particulate organic matter fluxes in the deep ocean. In subtropical oligotrophic gyres, where gelatinous zooplankton dominate macrozooplankton, the decline in the amount of organic matter reaching the seafloor is reduced by a factor of 2 when gelatinous macrozooplankton are considered (−17.5% vs. −29.7% when gelatinous macrozooplankton are not considered, all for 2100 under RCP8.5). The shift to gelatinous macrozooplankton in the future ocean therefore buffers the decline in deep carbon fluxes and should be taken into account when assessing potential changes in deep carbon storage and the risks that deep ecosystems may face when confronted with a decline in their food source.  相似文献   
3.
Evolution sometimes proceeds by loss, especially when structures and genes become dispensable after an environmental shift relaxes functional constraints. Subterranean vertebrates are outstanding models to analyze this process, and gene decay can serve as a readout. We sought to understand some general principles on the extent and tempo of the decay of genes involved in vision, circadian clock, and pigmentation in cavefishes. The analysis of the genomes of two Cuban species belonging to the genus Lucifuga provided evidence for the largest loss of eye-specific genes and nonvisual opsin genes reported so far in cavefishes. Comparisons with a recently evolved cave population of Astyanax mexicanus and three species belonging to the Chinese tetraploid genus Sinocyclocheilus revealed the combined effects of the level of eye regression, time, and genome ploidy on eye-specific gene pseudogenization. The limited extent of gene decay in all these cavefishes and the very small number of loss-of-function mutations per pseudogene suggest that their eye degeneration may not be very ancient, ranging from early to late Pleistocene. This is in sharp contrast with the identification of several vision genes carrying many loss-of-function mutations in ancient fossorial mammals, further suggesting that blind fishes cannot thrive more than a few million years in cave ecosystems.  相似文献   
4.
This paper aims to demonstrate how subfossil bone remains from Pleistocene and Holocene deposits can help to reconstruct the history of recently extinct taxa through the example of Pholidoscelis lizards from the Guadeloupe Islands in the French West Indies. To achieve this, we conducted a new anatomical and zooarchaeological study of fossil Pholidoscelis remains collected from 23 archaeological and paleontological deposits on the Guadeloupe Islands from which this genus is nowadays absent. Our results shed light on the past existence of large Pholidoscelis lizards on all the Guadeloupe islands but also on the difficulties of confident specific identification for these remains. Nevertheless, we suggest a possible past occurrence of the now extinct Pholidoscelis major on nearly all of the Guadeloupe islands. In addition, we identified a new Pholidoscelis species, Pholidoscelis turukaeraensis sp. nov., on Marie-Galante Island, where no Pholidoscelis lizards were previously reported. This new species underwent an increase in size after the end of the Pleistocene period, possibly due to reduced predation pressure. We also highlight the consumption of Pholidoscelis lizards by pre-Columbian Amerindians and the huge impact of European colonization, which led to the extinction of all these lizards in less than 300 years.http://zoobank.org/urn:lsid:zoobank.org:pub:15C39436-A083-483F-B35E-78807B606904  相似文献   
5.
Chagas disease affects millions of people in Latin America. The control of this vector-borne disease focuses on halting transmission by reducing or eliminating insect vector populations. Most transmission of Trypanosoma cruzi, the causative agent of Chagas disease, involves insects living within or very close to households and feeding mostly on domestic animals. As animal hosts can be intermittently present it is important to understand how host availability can modify transmission risk to humans and to characterize the host-seeking dispersal of triatomine vectors on a very fine scale. We used a semi-field system with motion-detection cameras to characterize the dispersal of Triatoma infestans, and compare the behavior of vector populations in the constant presence of hosts (guinea pigs), and after the removal of the hosts. The emigration rate – net insect population decline in original refuge – following host removal was on average 19.7% of insects per 10 days compared to 10.2% in constant host populations (p = 0.029). However, dispersal of T. infestans occurred in both directions, towards and away from the initial location of the hosts. The majority of insects that moved towards the original location of guinea pigs remained there for 4 weeks. Oviposition and mortality were observed and analyzed in the context of insect dispersal, but only mortality was higher in the group where animal hosts were removed (p-value <0.01). We discuss different survival strategies associated with the observed behavior and its implications for vector control. Removing domestic animals in infested areas increases vector dispersal from the first day of host removal. The implications of these patterns of vector dispersal in a field setting are not yet known but could result in movement towards human rooms.  相似文献   
6.

Objectives

Lifestyle combined interventions are a key strategy for preventing type-2 diabetes (T2DM) in overweight or obese subjects. In this framework, LIPOXmax individualized training, based on maximal fat oxidation [MFO], may be a promising intervention to promote fat mass (FM) reduction and prevent T2DM. Our primary objective was to compare three training programs of physical activity combined with a fruit- and vegetable-rich diet in reducing FM in overweight or obese women.

Design and setting

A five months non-blinded randomized controlled trial (RCT) with three parallel groups in La Réunion Island, a region where metabolic diseases are highly prevalent.

Subjects

One hundred and thirty-six non-diabetic obese (body mass index [BMI]: 27–40 kg/m2) young women (aged 20–40) were randomized (G1: MFO intensity; G2: 60% of VO2-peak intensity; G3: free moderate-intensity at-home exercise following good physical practices).

Outcomes

Anthropometry (BMI, bodyweight, FM, fat-free mass), glucose (fasting plasma glucose, insulin, HOMA-IR) and lipid (cholesterol and triglycerides) profiles, and MFO values were measured at month-0, month-3 and month-5.

Results

At month-5, among 109 women assessed on body composition, the three groups exhibited a significant FM reduction over time (G1: -4.1±0.54 kg; G2: -4.7±0.53 kg; G3: -3.5±0.78 kg, p<0.001, respectively) without inter-group differences (p = 0.135). All groups exhibited significant reductions in insulin levels or HOMA-IR index, and higher MFO values over time (p<0.001, respectively) but glucose control improvement was higher in G1 than in G3 while MFO values were higher in G1 than in G2 and G3. Changes in other outcome measures and inter-group differences were not significant.

Conclusion

In our RCT the LIPOXmax intervention did not show a superiority in reducing FM in overweight or obese women but is associated with higher MFO and better glucose control improvements. Other studies are required before proposing LIPOXmax training for the prevention of T2DM in overweight or obese women.

Trial Registration

ClincialTrials.gov NCT01464073  相似文献   
7.
Hsmar1 is a member of the mariner family of DNA transposons. Although widespread in nature, their molecular mechanism remains obscure. Many other cut-and-paste elements use a hairpin intermediate to cleave the two strands of DNA at each transposon end. However, this intermediate is absent in mariner, suggesting that these elements use a fundamentally different mechanism for second-strand cleavage. We have taken advantage of the faithful and efficient in vitro reaction provided by Hsmar1 to characterize the products and intermediates of transposition. We report different factors that particularly affect the reaction, which are the reaction pH and the transposase concentration. Kinetic analysis revealed that first-strand nicking and integration are rapid. The rate of the reaction is limited in part by the divalent metal ion-dependent assembly of a complex between transposase and the transposon end(s) prior to the first catalytic step. Second-strand cleavage is the rate-limiting catalytic step of the reaction. We discuss our data in light of a model for the two metal ion catalytic mechanism and propose that mariner excision involves a significant conformational change between first- and second-strand cleavage at each transposon end. Furthermore, this conformational change requires specific contacts between transposase and the flanking TA dinucleotide.  相似文献   
8.
Essential polyunsatured fatty acids have been shown to modulate enzymes, channels and transporters, to interact with lipid bilayers and to affect metabolic pathways. We have previously shown that eicosapentanoic acid (EPA, C20:5, n-3) activates epithelial sodium channels (ENaCs) in a cAMP-dependent manner involving stimulation of cAMP-dependent protein kinase (PKA). In the present study, we explored further the mechanism of EPA stimulation of ENaC in A6 cells. Fluorescence resonance energy transfer experiments confirmed activation of PKA by EPA. Consistent with our previous studies, EPA had no further stimulatory effect on amiloride-sensitive transepithelial current (INa) in the presence of CPT-cAMP. Thus, we investigated the effect of EPA on cellular pathways which produce cAMP. EPA did not stimulate adenylate cyclase activity or total cellular cAMP accumulation. However, membrane-bound phosphodiesterase activity was inhibited by EPA from 2.46 pmol/mg of protein/min to 1.3 pmol/mg of protein/min. To investigate the potential role of an A-kinase-anchoring protein (AKAP), we used HT31, an inhibitor of the binding between PKA and AKAPs as well as cerulenin, an inhibitor of myristoylation and palmitoylation. Both agents prevented the stimulatory effect of EPA and CPT-cAMP on INa and drastically decreased the amount of PKA in the apical membrane. Colocalization experiments in A6 cells cotransfected with fluorescently labeled ENaC beta subunit and PKA regulatory subunit confirmed the close proximity of the two proteins and the membrane anchorage of PKA. Last, in A6 cells transfected with a dead mutant of Sgk, an enzyme which up-regulates ENaCs, EPA did not stimulate Na+ current. Our results suggest that stimulation of ENaCs by EPA occurs via SGK in membrane-bound compartments containing an AKAP, activated PKA, and a phosphodiesterase.  相似文献   
9.
MOTIVATION: Currently most of the methods for identifying differentially expressed genes fall into the category of so called single-gene-analysis, performing hypothesis testing on a gene-by-gene basis. In a single-gene-analysis approach, estimating the variability of each gene is required to determine whether a gene is differentially expressed or not. Poor accuracy of variability estimation makes it difficult to identify genes with small fold-changes unless a very large number of replicate experiments are performed. RESULTS: We propose a method that can avoid the difficult task of estimating variability for each gene, while reliably identifying a group of differentially expressed genes with low false discovery rates, even when the fold-changes are very small. In this article, a new characterization of differentially expressed genes is established based on a theorem about the distribution of ranks of genes sorted by (log) ratios within each array. This characterization of differentially expressed genes based on rank is an example of all-gene-analysis instead of single gene analysis. We apply the method to a cDNA microarray dataset and many low fold-changed genes (as low as 1.3 fold-changes) are reliably identified without carrying out hypothesis testing on a gene-by-gene basis. The false discovery rate is estimated in two different ways reflecting the variability from all the genes without the complications related to multiple hypothesis testing. We also provide some comparisons between our approach and single-gene-analysis based methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   
10.

Background

The combination of elevated glucose and free-fatty acids (FFA), prevalent in diabetes, has been suggested to be a major contributor to pancreatic β-cell death. This study examines the synergistic effects of glucose and FFA on β-cell apoptosis and the molecular mechanisms involved. Mouse insulinoma cells and primary islets were treated with palmitate at increasing glucose and effects on apoptosis, endoplasmic reticulum (ER) stress and insulin receptor substrate (IRS) signaling were examined.

Principal Findings

Increasing glucose (5–25 mM) with palmitate (400 µM) had synergistic effects on apoptosis. Jun NH2-terminal kinase (JNK) activation peaked at the lowest glucose concentration, in contrast to a progressive reduction in IRS2 protein and impairment of insulin receptor substrate signaling. A synergistic effect was observed on activation of ER stress markers, along with recruitment of SREBP1 to the nucleus. These findings were confirmed in primary islets. The above effects associated with an increase in glycogen synthase kinase 3β (Gsk3β) activity and were reversed along with apoptosis by an adenovirus expressing a kinase dead Gsk3β.

Conclusions/Significance

Glucose in the presence of FFA results in synergistic effects on ER stress, impaired insulin receptor substrate signaling and Gsk3β activation. The data support the importance of controlling both hyperglycemia and hyperlipidemia in the management of Type 2 diabetes, and identify pancreatic islet β-cell Gsk3β as a potential therapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号