首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   11篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   11篇
  1977年   12篇
  1976年   6篇
  1975年   1篇
  1973年   5篇
  1972年   1篇
  1971年   2篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1946年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
1.
M A Buck  B S Cooperman 《Biochemistry》1990,29(22):5374-5379
In previous work we showed that on photolysis of Escherichia coli ribosomes in the presence of [3H]tetracycline (TC) the major protein labeled is S7, and we presented strong evidence that such labeling takes place from a high-affinity site related to the inhibitory action of TC [Goldman, R. A., Hasan, T., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1983) Biochemistry 22, 359-368]. In this work we use single protein omission reconstitution (SPORE) experiments to identify those proteins that are important for high-affinity TC binding to the 30S subunit, as measured by both cosedimentation and filter binding assays. With respect to both sedimentation coefficients and relative Phe-tRNAPhe binding, the properties of the SPORE particles we obtain parallel very closely those measured earlier [Nomura, M., Mizushima, S., Ozaki, M., Traub, P., & Lowry, C. V. (1969) Cold Spring Harbor Symp. Quant. Biol. 34, 49-61], with the exception of the SPORE particle lacking S13. A total of five proteins, S3, S7, S8, S14, and S19, are shown to be important for TC binding, with the largest effects seen on omission of proteins S7 and S14. Determination of the protein compositions of the corresponding SPORE particles demonstrates that the observed effects are, for the most part, directly attributable to the omission of the given protein rather than reflecting an indirect effect of omitting one protein on the uptake of another. A large body of evidence supports the notion that four of these proteins, S3, S7, S14, and S19, are included, along with 16S rRNA bases 920-1396, in one of the major domains of the 30S subunit.  相似文献   
2.
Human alpha 1-antichymotrypsin has been cloned, sequenced and expressed in Escherichia coli and recombinant protein as well as point-specific mutants have been purified and characterized. The corrected gene-deduced amino acid sequence has 45% overall identity with alpha 1-protease inhibitor, which is higher than the 42% previously reported (Chandra, T., Stackhouse, R., Kidd, V. J., Robson, J. H., and Woo, S. L. C. (1983) Biochemistry 22, 5055-5060). Recombinant antichymotrypsin (rACT) is similar to natural antichymotrypsin with respect to the specificity of its interactions with proteases. Its second-order rate constant for association with bovine chymotrypsin is 6-8 x 10(5) M-1 s-1, which is identical to that of the serum-derived inhibitor. Site-specific mutagenesis has been used to produce two variants of rACT in which the P1 position has been changed from leucine to either methionine (L358M-rACT) or arginine (L358R-rACT). L358M-rACT has a specificity of inhibitory activity toward serine proteases closely similar to that of native rACT. By contrast, the specificity of L358R-rACT is quite different from that of native rACT, most notably in efficiently inhibiting trypsin and human thrombin while showing a decreased ability to inhibit chymotrypsin.  相似文献   
3.
We here report the results of using three light-dependent procedures for crosslinking IF-3 to 30 S proteins within an IF-3·30 S complex. In the first procedure, employing FMN as a photosensitizer, protein S12 is found to be the only major crosslinked protein. In the second procedure, IF-3 is first reacted with the new two-stage crosslinking reagent, p-nitrobenzylmaleimide (PNBM), and the PNBM—IF-3·30 S complex is irradiated. The major crosslinked proteins are S3 > S2, S12, S18. Small amounts of crosslinked S11 and S21 are also found. In the third procedure, the IF-3·30 S complex is reacted with PNBM and then irradiated. The major crosslinked proteins are S12 > S3 > S11 and small amounts of crosslinked S1, S13, and S21 are also found. These results are compared with results obtained by others using different crosslinking procedures and are used to discuss the Lake and Kahan model (J. A. Lake and L. Kahan, 1975, J. Mol. Biol., 99, 631–644, and J. A. Lake, 1978, in Advanced Techniques in Biological Electron Microscopy II, Koehler, J. K., ed., pp. 173–211, Springer-Verlag, Berlin) for IF-3 binding to 30 S subunits.  相似文献   
4.
5.
Community hospitals can do much in the general effort toward earlier detection of breast cancer. Using xeromammography in the department of general radiology of one community hospital, 21 cases of occult carcinoma were detected in 2,392 patients in a two year period. Patients were both symptomatic and asymptomatic. This percentage is comparable to results in previously published series of similar patient populations, and can be expected to be slightly higher than screening populations of totally asymptomatic patients. In 24 percent of cases of occult carcinoma there was axillary node involvement, compared with 42 percent axillary node involvement in cases of nonoccult carcinoma.Early detection efforts are currently centered on improving thoroughness in physical examinations, stressing breast self-examination and identifying patients in high-risk categories. These, together with proper periodic use of mammograms, will yield the highest rate of early carcinoma detection until more sensitive biologic markers are developed.  相似文献   
6.
7.
Protein synthesis by single ribosomes   总被引:7,自引:0,他引:7  
The ribosome is universally responsible for synthesizing proteins by translating the genetic code transcribed in mRNA into an amino acid sequence. Ribosomes use cellular accessory proteins, soluble transfer RNAs, and metabolic energy to accomplish the initiation, elongation, and termination of peptide synthesis. In translocating processively along the mRNA template during the elongation cycle, ribosomes act as supramolecular motors. Here we demonstrate that ribosomes adsorbed on a surface, as for mechanical or spectroscopic studies, are capable of polypeptide synthesis and that tethered particle analysis of fluorescent beads connected to ribosomes via polyuridylic acid can be used to estimate the rate of polyphenylalanine synthesis by individual ribosomes. This work opens the way for application of biophysical techniques, originally developed for the classical motor proteins, to the understanding of protein biosynthesis.  相似文献   
8.
9.
Dihydrouridine (DHU) positions within tRNAs have long been used as sites to covalently attach fluorophores, by virtue of their unique chemical reactivity toward reduction by NaBH(4), their abundance within prokaryotic and eukaryotic tRNAs, and the biochemical functionality of the labeled tRNAs so produced. Interpretation of experiments employing labeled tRNAs can depend on knowing the distribution of dye among the DHU positions present in a labeled tRNA. Here we combine matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) analysis of oligonucleotide fragments and thin layer chromatography to resolve and quantify sites of DHU labeling by the fluorophores Cy3, Cy5, and proflavin in Escherichia coli tRNA(Phe) and E. coli tRNA(Arg). The MALDI-MS results led us to re-examine the precise chemistry of the reactions that result in fluorophore introduction into tRNA. We demonstrate that, in contrast to an earlier suggestion that has long been unchallenged in the literature, such introduction proceeds via a substitution reaction on tetrahydrouridine, the product of NaBH(4) reduction of DHU, resulting in formation of substituted tetrahydrocytidines within tRNA.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号