首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  2022年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.

Background

The interrogation of proteomes (“proteomics”) in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.

Methodology/Principal Findings

We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (∼100 fM–1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.

Conclusions/Significance

We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.  相似文献   
2.
In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25 – 90nm wide nanofibers and 90 – 250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females). In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers’ chitins; 88.45–95.48% and for commercial chitin; 94.95%.  相似文献   
3.
We have shown the fetal liver cell engraftments into multiple tissues of adult healthy mice, achieved without suppressing the animals’ immune systems. Fetal cells from the livers of male C57Bl/6J Black lineage mice at day 13 to 15 of gestation were injected intravenously into female adult CC57W/MY White mice. The grafting was evaluated by Y-chromosome-specific PCR, cytometric analysis of fluorescently stained donor cells, and histological analysis. All the methods consistently showed the presence of multiple engraftments randomly distributed through the various organs of the recipients. After 60 days, the grafts still constituted 0.1 to 2.75% of the tissues. The grafted cells did not change their appearance in any of the organs except the brain, where they became enlarged. Inflammatory reactions were not detected in any of the histological preparations. The frequency of engraftments was higher in the liver, indicating that similarity between the donor and recipient cells facilitates engraftment. The high inherent plasticity of fetal liver cells underlies their ability to integrate into healthy recipient organs, which can be governed by environmental conditions and connections with neighboring cells rather than by the initial cellular developmental programs. The fact that fetal liver cells can be grafted into multiple tissues of healthy animals indicates that they can be used to replace the natural loss of cells in adult organisms.  相似文献   
4.
The limitations of high-level expression of virus surface proteins in yeast are not well understood. The inefficiency of yeast to produce active human virus surface glycoproteins, as well as other mammalian glycoproteins, is usually explained by the inefficient folding of the glycoprotein into its characteristic and functional three-dimensional structure from a random coil. The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. To improve folding and solubility of viral surface glycoprotein, the genes encoding human ER resident chaperones calnexin, calreticulin, immunoglobin binding protein (BiP), protein disulfide isomerase (PDI) and foldase (ERp57) were coexpressed together with hemagglutinin gene from measles virus in the yeast Saccharomyces cerevisiae. The effect of coexpressing chaperones on the total yield of measles virus hemagglutinin (MeH) as well as the intracellular fate of the glycoprotein was determined. Our results demonstrated that coexpression of human calnexin noticeably enhanced the quantity of the soluble glycosylated form of MeH in yeast. The coexpression of human calreticulin-, PDI-, ERp57- and BiP-encoding genes did not improve the quality of recombinant MeH.  相似文献   
5.
Exploring the sequence space of a DNA aptamer using microarrays   总被引:2,自引:1,他引:1  
The relationship between sequence and binding properties of an aptamer for immunoglobulin E (IgE) was investigated using custom DNA microarrays. Single, double and some triple mutations of the aptamer sequence were created to evaluate the importance of specific base composition on aptamer binding. The majority of the positions in the aptamer sequence were found to be immutable, with changes at these positions resulting in more than a 100-fold decrease in binding affinity. Improvements in binding were observed by altering the stem region of the aptamer, suggesting that it plays a significant role in binding. Results obtained for the various mutations were used to estimate the information content and the probability of finding a functional aptamer sequence by selection from a random library. For the IgE-binding aptamer, this probability is on the order of 1010 to 109. Results obtained for the double and triple mutations also show that there are no compensatory mutations within the space defined by those mutations. Apparently, at least for this particular aptamer, the functional sequence space can be represented as a rugged landscape with sharp peaks defined by highly constrained base compositions. This makes the rational optimization of aptamer sequences using step-wise mutagenesis approaches very challenging.  相似文献   
6.

Background

Ganglionated plexuses (GP) are terminal parts of cardiac autonomous nervous system (ANS). Radiofrequency ablation (RFA) for atrial fibrillation (AF) possibly affects GP. Changes in heart rate variability (HRV) after RFA can reflect ANS modulation.

Methods

Epicardial RFA of GP on the left atrium (LA) was performed under the general anesthesia in 15 mature Romanov sheep. HRV was used to assess the alterations in autonomic regulation of the heart. A 24???hour ECG monitoring was performed before the ablation, 2 days after it and at each of the 12 following months. Ablation sites were evaluated histologically.

Results

There was an instant change in HRV parameters after the ablation. A standard deviation of all intervals between normal QRS (SDNN), a square root of the mean of the squared differences between successive normal QRS intervals (RMSSD) along with HRV triangular index (TI), low frequency (LF) power and high frequency (HF) power decreased, while LF/HF ratio increased. Both the SDNN, LF power and the HF power changes persisted throughout the 12???month follow???up. Significant decrease in RMSSD persisted only for 3 months, HRV TI for 6 months and increase in LF/HF ratio for 7 months of the follow???up. Afterwards these three parameters were not different from the preprocedural values.

Conclusions

Epicardial RFA of GP’s on the ovine left atrium has lasting effect on the main HRV parameters (SDNN, HF power and LF power). The normalization of RMSSD, HRV TI and LF/HF suggests that HRV after epicardial RFA of GPs on the left atrium might restore over time.
  相似文献   
7.
The histidine ligand of the monomer bacteriochlorophyll molecule on the active side (BA) of the photosynthetic reaction center from Rhodobacter sphaeroides was mutated to a number of other amino acids. Histidine (H) at the position L153 was replaced with aspartic acid (D), glutamic acid (E), glutamine (Q), glycine (G), leucine (L), phenylalanine (F), serine (S), valine (V) and tyrosine (Y). These mutations were created to investigate how the alteration of the ligand residue affects the properties of the BA molecule and changes the dynamics of the primary charge separation in reaction centers. In all of the mutants, the changes in the ligand result in a blue-shift of the BA absorption spectrum, in both visible and near-infrared spectral regions, with the size of the shift varying between mutants. The primary electron transfer time constants in these mutant reaction centers range from 4.5 to 18 ps, being substantially slower than the wild-type value of 3 ps. The decrease in the electron transfer rate is interpreted as being due to an increase in the free energy of the initial charge-separated state P+BA.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
8.
The ER chaperone calreticulin (CALR) also has extracellular functions and can exit the mammalian cell in response to various factors, although the mechanism by which this takes place is unknown. The yeast Saccharomyces cerevisiae efficiently secretes human CALR, and the analysis of this process in yeast could help to clarify how it gets out of eukaryotic cells. We have achieved a secretion titer of about 140 mg/L CALR in our S. cerevisiae system. Here, we present a comparative quantitative whole proteome study in CALR-secreting yeast using non-equilibrium pH gradient electrophoresis (NEPHGE)-based two-dimensional gel electrophoresis (2DE) as well as liquid chromatography mass spectrometry in data-independent analysis mode (LC-MSE). A reconstructed carrier ampholyte (CA) composition of NEPHGE-based first-dimension separation for 2DE could be used instead of formerly commercially available gels. Using LC-MSE, we identified 1574 proteins, 20 of which exhibited differential expression. The largest group of differentially expressed proteins were structural ribosomal proteins involved in translation. Interestingly, we did not find any signs of cellular stress which is usually observed in recombinant protein-producing yeast, and we did not identify any secretory pathway proteins that exhibited changes in expression. Taken together, high-level secretion of human recombinant CALR protein in S. cerevisiae does not induce cellular stress and does not burden the cellular secretory machinery. There are only small changes in the cellular proteome of yeast secreting CALR at a high level.  相似文献   
9.
Single molecule fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy were used to investigate DNA looping by NgoMIV restriction endonuclease. Using a linear double-stranded DNA (dsDNA) molecule labeled with a fluorescence donor molecule, Cy3, and fluorescence acceptor molecule, Cy5, and by varying the concentration of NgoMIV endonuclease from 0 to 3 x 10(-6) M, it was possible to detect and determine diffusion properties of looped DNA/protein complexes. FRET efficiency distributions revealed a subpopulation of complexes with an energy transfer efficiency of 30%, which appeared upon addition of enzyme in the picomolar to nanomolar concentration range (using 10(-11) M dsDNA). The concentration dependence, fluorescence burst size analysis, and fluorescence correlation analysis were all consistent with this subpopulation arising from a sequence specific interaction between an individual enzyme and a DNA molecule. A 30% FRET efficiency corresponds to a distance of approximately 65 A, which correlates well with the distance between the ends of the dsDNA molecule when bound to NgoMIV according to the crystal structure of this complex. Formation of the looped complexes was also evident in measurements of the diffusion times of freely diffusing DNA molecules with and without NgoMIV. At very high protein concentrations compared to the DNA concentration, FRET and fluorescence correlation spectroscopy results revealed the formation of larger DNA/protein complexes.  相似文献   
10.
We have used a novel affinity-based proteomics technology to examine the protein signature of small secreted extracellular vesicles called exosomes. The technology uses a new class of protein binding reagents called SOMAmers® (slow off-rate modified aptamers) and allows the simultaneous precise measurement of over 1000 proteins. Exosomes were highly purified from the Du145 prostate cancer cell line, by pooling selected fractions from a continuous sucrose gradient (within the density range of 1.1 to 1.2 g/ml), and examined under standard conditions or with additional detergent treatment by the SOMAscanTM array (version 3.0). Lysates of Du145 cells were also prepared, and the profiles were compared. Housekeeping proteins such as cyclophilin-A, LDH, and Hsp70 were present in exosomes, and we identified almost 100 proteins that were enriched in exosomes relative to cells. These included proteins of known association with cancer exosomes such as MFG-E8, integrins, and MET, and also those less widely reported as exosomally associated, such as ROR1 and ITIH4. Several proteins with no previously known exosomal association were confirmed as exosomally expressed in experiments using individual SOMAmer® reagents or antibodies in micro-plate assays. Western blotting confirmed the SOMAscanTM-identified enrichment of exosomal NOTCH-3, L1CAM, RAC1, and ADAM9. In conclusion, we describe here over 300 proteins of hitherto unknown association with prostate cancer exosomes and suggest that the SOMAmer®-based assay technology is an effective proteomics platform for exosome-associated biomarker discovery in diverse clinical settings.Prostate carcinoma is the most frequent male cancer, with an estimated 240,000 newly diagnosed individuals and 28,000 deaths in the United States during 2012 (National Cancer Institute (NIH)). Methods for detecting this cancer are based on a combination of physical examination through digital rectal examination, clinical imaging, quantification of circulating levels of prostate specific antigen (PSA),1 and transrectal ultrasound-guided biopsy. As a non-invasive test, PSA measurement is still widely used, but it remains insensitive, as around 15% of men with normal levels of PSA will have prostate cancer according to biopsy results (1), and 60% of men with elevated PSA levels may have other, noncancerous conditions but be subjected to further, unnecessary investigations and interventions (2). PSA may be of better utility in monitoring disease progression (2). An ability to diagnose the disease more specifically at an early stage is likely to save lives and alleviate the healthcare burden and morbidities arising from misdiagnosis. In addition, methods for monitoring the course of the disease in a non-invasive and perhaps predictive manner would offer increased patient benefit, enabling early detection of imminent relapse under hormone therapy, for example. Therefore there is a clinical need for improved molecular approaches for disease diagnosis and monitoring in these settings.Small vesicles termed exosomes are present in body fluids, including serum, plasma, urine, and seminal plasma (37), and their isolation and examiniation may prove useful as a minimally invasive means of obtaining a complex set of disease markers. Exosomes are secreted by most, if not all, cell types and are generally accepted as derived principally from multivesicular bodies of the late endocytic tract (8), although examples of plasma membrane budding nanovesicles of similar phenotype have also been described (9). Exosomes are particularly enriched in membrane proteins and in factors related to such endosomal compartments. They also contain proteins found in the cytosol, but they poorly represent components of organelles such as the mitochondria, nucleus, and endoplasmic reticulum (10). Exosomes also comprise an assortment of coding and noncoding RNA. There has been considerable global effort toward defining disease-related alterations in exosomal RNA. However, it is well established that aberrant alterations in cancer cells in response to metabolic, hypoxic, or other forms of stress are reflected in protein changes in the exosomes produced (1113). Thus exosomes from diseased origins can be distinguished from those of a normal phenotype based on their protein profiles alone.Proteomics studies using mass spectrometry (MS) have previously been conducted on prostate cancer exosomes/microvesicles obtained from cell lines (14, 15), xenotransplantation models (16), or ex vivo biofluids (17). Hundreds of proteins with putative associations with exosomes/microvesicles have been identified. These studies highlight several interesting candidate markers of potential biomarker utility that are currently being explored. However, global proteomic approaches of this nature can have two major limitations. Although the most abundant proteins are more likely to be identified by MS, it is difficult to infer information about relative abundances of proteins in complex samples when using these methods. Secondly, given the often exacting, difficult-to-reproduce, and time-consuming workflows involved, such technologies are poorly suited for the analysis of a large number of samples. Multiplex protein array methodologies have the potential to overcome such issues and offer quantification and options for more rapid sample throughput. However, most platforms are based on antibodies, and these arrays are typically limited to <100 proteins, principally because the cross-reactivity of secondary antibodies can negatively affect assay specificity (18).A recently developed proteomics platform, termed SOMAscanTM, provides a new generation of protein detection technologies. The platform is capable of the simultaneous quantitative analysis of 1129 proteins per sample in its current form. It is also an approach well suited to handling large numbers of specimens required for well-powered clinical studies (19). The key to this technology, which is described in detail by Gold et al. (20, 21), is the use of slow off-rate modified aptamers (SOMAmers) containing chemically modified nucleotides. This confers greater stability, expanded target range, and improved affinity for the target proteins. This multiplex platform has been applied successfully to small volumes (∼15 μl) of plasma specimens from chronic renal disease patients (20), serum specimens from mesothelioma (22) or lung cancer patients (19), tissue lysates (23), and cerebrospinal fluid (24). However, to date, the compatibility of this array technology with exosomes as the specimen has not been investigated.The purpose of the current study was to examine the utility of this evolving technology in profiling the protein repertoire of exosomes. Research was conducted using highly pure exosomes isolated from a prostate cancer cell line, and we compared this sample to the protein profile of the parent cells. By so doing, we obtained evidence of the compatibility of the platform with this difficult, membranous sample and identified several proteins of previously unknown association with exosomes. In summary, SOMAscanTM is a versatile tool for probing the composition of exosomes and is a suitable platform to provide a high-throughput approach for exosome-based biomarker discovery in prostate cancer and other clinical settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号