首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1957年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
Patients with systemic lupus erythematosus (SLE) have an increased incidence of arterial and venous thromboses. The mechanism by which thromboses develop in these patients is unknown. We had previously observed that the sera of patients with SLE contain antibodies and immune complexes that can bind to endothelial cells. Because endothelial cells can synthesize tissue factor, a potent activator of coagulation, we studied the effect of IgG complexes and sera from patients with SLE on the production of tissue factor by these cells. Human umbilical venous endothelial cells incubated with heat-aggregated IgG (HA-IgG) (0.5 to 4.0 mg) elaborate procoagulant activity in a dose-dependent manner. All procoagulant activity was found in the particulate cell fraction, and none was secreted into the medium. Maximum expression of procoagulant activity required 6 to 8 hr, and its production was totally inhibited by the addition of cyclohexamide or actinomycin D. The presence of gel-filtered platelets augmented production of procoagulant activity by endothelial cells stimulated by HA-IgG. Endothelial cell procoagulant activity was not inactivated by diisofluoropropylphosphate, required the presence of Factor VII for its expression, and was neutralized by a specific anti-tissue factor antibody. Endothelial cells incubated with sera from 14 of 16 patients with SLE produced increased amounts of tissue factor compared with 21 normal sera (p less than 0.025). Fractions of two SLE sera containing monomeric IgG, IgA, or IgM, as well as fractions containing IgG complexes, each stimulated endothelial cells to produce more tissue factor than similar fractions prepared from two normal sera. These studies demonstrate that endothelial cells will produce the procoagulant tissue factor after exposure to anti-endothelial cell antibodies or IgG-containing immune complexes. The production of tissue factor by endothelial cells at sites of immune vascular injury may play a role in the development of thromboses in patients with SLE.  相似文献   
2.
Cultured bovine capillary endothelial (BCE) cells produce low levels of collagenolytic activity and significant amounts of the serine protease plasminogen activator (PA). When grown in the presence of nanomolar quantities of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), BCE cells produced 5-15 times more collagenolytic activity and 2-10 times more PA than untreated cells. The enhanced production of these enzymes was dependent on the dose of TPA used, with maximal response at 10(-7) to 10(-8) M. Phorbol didecanoate (PDD), an analog of TPA which is an active tumor promoter, also increased protease production. 4-O-methyl-TPA and 4α-PDD, two analogs of TPA which are inactive as tumor promoters, had no effect on protease production. Increased PA and collagenase activities were detected within 7.5 and 19 h, respectively, after the addition of TPA. The TPA-stimulated BCE cells synthesized a urokinase-type PA and a typical vertebrate collagenase. BCE cells were compared with bovine aortic endothelial (BAE) cells and bovine embryonic skin (BES) fibroblasts with respect to their production of protease in response to TPA. Under normal growth conditions, low levels of collagenolyic activity were detected in the culture fluids from BCE, BAE, and BES cells. BCE cells produced 5-13 times the basal levels of collagenolytic activity in response to TPA, whereas BAE cells and BES fibroblasts showed a minimal response to TPA. Both BCE and BAE cells exhibited relatively high basal levels of PA, the production of which was stimulated approximately threefold by the addition of TPA. The observation that BCE cells and not BAE cells produced high levels of both PA and collagenase activities in response to TPA demonstrates a significant difference between these two types of endothelial cells and suggests that the enhanced detectable activities are a property unique to bovine capillary and microvessel and endothelial cells.  相似文献   
3.
Urokinase plasminogen activator (uPA) and its high affinity receptor (uPAR) play crucial proteolytic and non-proteolytic roles in cancer metastasis. In addition to promoting plasmin-mediated degradation of extracellular matrix barriers, cell surface engagement of uPA through uPAR binding results in the activation of a suite of diverse cellular signal transduction pathways. Because uPAR is bound to the plasma membrane through a glycosyl-phosphatidylinositol anchor, these signalling sequelae are thought to occur through the formation of multi-protein cell surface complexes involving uPAR. To further characterize uPAR-driven protein complexes, we co-immunoprecipitated uPAR from the human ovarian cancer cell line, OVCA 429, and employed sensitive proteomic methods to identify the uPAR-associated proteins. Using this strategy, we identified several known, as well as numerous novel, uPAR associating proteins, including the epithelial restricted integrin, alphavbeta6. Reverse immunoprecipitation using anti-beta6 integrin subunit monoclonal antibodies confirmed the co-purification of this protein with uPAR. Inhibition of uPAR and/or beta6 integrin subunit using neutralizing antibodies resulted in the inhibition of uPA-mediated ERK 1/2 phosphorylation and subsequent cell proliferation. These data suggest that the association of beta6 integrin (and possibly other lynchpin cancer regulatory proteins) with uPAR may be crucial in co-transmitting uPA signals that induce cell proliferation. Our findings support the notion that uPAR behaves as a lynchpin in promoting tumorigenesis by forming functionally active multiprotein complexes.  相似文献   
4.
Urokinase plasminogen activator (uPA) plays a major role in fibrinolytic processes and also can potentiate LPS-induced neutrophil activation through interactions with its kringle domain (KD). To investigate the role of the uPA KD in modulating acute inflammatory processes in vivo, we cloned and then developed Abs to the murine uPA KD. Increased pulmonary expression of uPA and the uPA KD was present in the lungs after LPS exposure. Administration of anti-kringle Abs diminished LPS-induced up-regulation of uPA and uPA KD in the lungs, and also decreased the severity of LPS-induced acute lung injury, as determined by development of lung edema, pulmonary neutrophil accumulation, histology, and lung IL-6, MIP-2, and TNF-alpha cytokine levels. These proinflammatory effects of the uPA KD appeared to be mediated through activation of Akt and NF-kappaB. The present studies indicate that the uPA KD plays a major role in the development of TLR4-mediated acute inflammatory processes, including lung injury. Blockade of the uPA KD may prevent the development or ameliorate the severity of acute lung injury induced through TLR4-dependent mechanisms, such as would occur in the setting of Gram-negative pulmonary or systemic infection.  相似文献   
5.
uPA (urokinase-type plasminogen activator) stimulates cell migration through multiple pathways, including formation of plasmin and extracellular metalloproteinases, and binding to the uPAR (uPA receptor; also known as CD87), integrins and LRP1 (low-density lipoprotein receptor-related protein 1) which activate intracellular signalling pathways. In the present paper we report that uPA-mediated cell migration requires an interaction with fibulin-5. uPA stimulates migration of wild-type MEFs (mouse embryonic fibroblasts) (Fbln5+/+ MEFs), but has no effect on fibulin-5-deficient (Fbln5-/-) MEFs. Migration of MEFs in response to uPA requires an interaction of fibulin-5 with integrins, as MEFs expressing a mutant fibulin-5 incapable of binding integrins (Fbln(RGE/RGE) MEFs) do not migrate in response to uPA. Moreover, a blocking anti-(human β1-integrin) antibody inhibited the migration of PASMCs (pulmonary arterial smooth muscle cells) in response to uPA. Binding of uPA to fibulin-5 generates plasmin, which excises the integrin-binding N-terminal cbEGF (Ca2+-binding epidermal growth factor)-like domain, leading to loss of β1-integrin binding. We suggest that uPA promotes cell migration by binding to fibulin-5, initiating its cleavage by plasmin, which leads to its dissociation from β1-integrin and thereby unblocks the capacity of integrin to facilitate cell motility.  相似文献   
6.
We examined the effect of urokinase (uPA) and its fragments on vascular smooth muscle cell contraction. Single-chain uPA inhibits phenylepherine (PE) -induced contraction of rat aortic rings, whereas two-chain uPA exerts the opposite effect. Two independent epitopes mediating these opposing activities were identified. A6, a capped peptide corresponding to amino acids 136-143 (KPSSPPEE) of uPA, increased the EC(50) of PE-induced vascular contraction sevenfold by inhibiting the release of calcium from intracellular stores. A6 activity was abolished by deleting the carboxyl-terminal Glu or by mutating the Ser corresponding to position 138 in uPA to Glu. A single-chain uPA variant lacking amino acids 136-143 did not induce vasorelaxation. A second epitope within the kringle of uPA potentiated PE-induced vasoconstriction. This epitope was exposed when single-chain uPA was converted to a two-chain molecule by plasmin. The isolated uPA kringle augmented vasoconstriction, whereas uPA variant lacking the kringle had no procontractile activity. These studies reveal previously undescribed vasoactive domains within urokinase and its naturally derived fragments.  相似文献   
7.
Monoclonal antibodies were generated to antigens on cultured human umbilical vein endothelial cells. Spleen cells from BALB/c mice, immunized with low passage cultures of human umbilical vein endothelial cells, were fused with the non-secretory myeloma line, P3 x 63Ag 8.653. Hybridoma supernatants were screened for the desired immunological reactivity using ELISA binding assays. Hybridomas secreting antibodies reacting with the immunizing endothelial cells, but not with peripheral blood mononuclear cells, were cloned by limiting dilution and three stable clones were chosen for study. Further testing by ELISA revealed that each antibody displayed a unique pattern of reactivity. One antibody, 14E5, reacted with the macrophage-like cell line DHL-2, cultured macrophages derived from peripheral blood monocytes, and macrophages derived from malignant effusions. The antibody failed to react with fibroblasts or bovine endothelial cells. The second antibody, 12C6, reacted with human and primate fibroblasts and endothelial cells derived from bovine arteries, but not with mature macrophages. The third clone, 10B9, reacted only with the immunizing endothelial cells and the immature-macrophage line U-937. All three antibodies failed to react with long-term human B or T lymphoblastoid cell lines, leukemic cell lines, or murine macrophage lines. None of the antibodies reacted with a battery of human epithelial derived cell lines or primary cultures of human epithelial cells. Indirect immunofluorescence assays revealed that the antigens were expressed on the cell surface. These antibodies should prove useful as differentiation markers of human endothelial cells and in studies of endothelial cell function.  相似文献   
8.
The protease inhibitor, protease nexin-2 (PN-2), is the secreted form of the amyloid beta-protein precursor (APP) which contains the Kunitz protease inhibitor domain. PN-2/APP is an abundant platelet alpha-granule protein which is secreted upon platelet activation. PN-2/APP mRNA is present in cultured endothelial cells and the protein has been detected in plasma. In the present studies we quantitated PN-2/APP in platelets, plasma and several different cell types of the vasculature to identify the repository of the protein in the circulatory system. We report that PN-2/APP is predominantly a platelet protein in the vascular compartment. Lysates of unstimulated umbilical vein endothelial cells, granulocytes or monocytes contained little PN-2/APP based on sensitive functional protease binding and immunoblotting assays. Quantitative immunoblotting studies demonstrated that normal citrated-plasma contains less than or equal to 60 pM PN-2/APP. In contrast, platelets can contribute up to 30 nM PN-2/APP, indicating that they are the major source of the protein in blood.  相似文献   
9.
Cultured human cytotrophoblasts synthesize and secrete urokinase-type plasminogen activator (uPA) during the first 24 h of culture, but secretion declines during the subsequent day. In contrast, synthesis and secretion of fibronectin increases during the 2 days of culture. The levels of uPA mRNA parallel the changes in synthesis and secretion of uPA. Treatment of cytotrophoblasts with 8-bromo-cAMP (1.5 mM) transiently raises uPA mRNA levels and uPA secretion. This treatment reduces fibronectin mRNA levels and causes a sustained increase in beta chorionic gonadotropin mRNA content and chorionic gonadotropin secretion. We conclude that a cAMP-mediated process up-regulates uPA expression in cytotrophoblasts. However, the stimulatory effect of the cyclic nucleotide analog on uPA is transient.  相似文献   
10.
The urokinase plasminogen activator receptor (uPAR) is a multifunctional, GPI-linked receptor that modulates cell adhesion/migration and fibrinolysis. We mapped the interaction sites between soluble uPAR (suPAR) and high molecular mass kininogen (HK). Binding of biotin-HK to suPAR was inhibited by HK, 56HKa, and 46HKa with an IC50 of 60, 110, and 8 nm, respectively. We identified two suPAR-binding sites, a higher affinity site in the light chain of HK and 46HKa (His477-Gly496) and a lower affinity site within the heavy chain (Cys333-Lys345). HK predominantly bound to suPAR fragments containing domains 2 and 3 (S-D2D3). Binding of HK to domain 1 (S-D1) was also detected, and the addition of S-D1 to S-D2D3 completely inhibited biotin-HK or -46HKa binding to suPAR. Using sequential and overlapping 20-amino acid peptides prepared from suPAR, two regions for HK binding were identified. One on the carboxyl-terminal end of D2 (Leu166-Thr195) blocked HK binding to suPAR and to human umbilical vein endothelial cells (HUVEC). This site overlapped with the urokinase-binding region, and urokinase inhibited the binding of HK to suPAR. A second region on the amino-terminal portion of D3 (Gln215-Asn255) also blocked HK binding to HUVEC. Peptides that blocked HK binding to uPAR also inhibited prekallikrein activation on HUVEC. Therefore, HK interacts with suPAR at several sites. HK binds to uPAR as part of its interaction with its multiprotein receptor complex on HUVEC, and the biological functions that depend upon this binding are modulated by urokinase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号