首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   20篇
  301篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   16篇
  2014年   18篇
  2013年   20篇
  2012年   16篇
  2011年   18篇
  2010年   15篇
  2009年   14篇
  2008年   18篇
  2007年   14篇
  2006年   14篇
  2005年   11篇
  2004年   14篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   9篇
  1998年   9篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1977年   2篇
  1973年   2篇
  1969年   1篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
1.
The control of subcellular mRNA localization and translation is often mediated by protein factors that are directly or indirectly associated with the cytoskeleton. We report the identification and characterization of a rice seed protein that possesses both RNA and microtubule binding activities. In vitro UV cross-linking assays indicated that this protein binds to all mRNA sequences tested, although there was evidence for preferential binding to RNAs that contained A-C nucleotide sequence motifs. The protein was purified to homogeneity using a two-step procedure, and amino acid sequencing identified it as the multifunctional protein (MFP), a peroxisomal enzyme known to possess a number of activities involved in the beta-oxidation of fatty acids. The recombinant version of this rice MFP binds to RNA in UV cross-linking and gel mobility shift experiments, co-sediments specifically with microtubules, and possesses at least two enzymatic activities involved in peroxisomal fatty acid beta-oxidation. Taken together these data suggest that MFP has an important role in mRNA physiology in the cytoplasm, perhaps in regulating the localization or translation of mRNAs through an interaction with microtubules, in addition to its peroxisomal function.  相似文献   
2.
How do vertebrate epithelial appendages form from the flat epithelia? Following the formation of feather placodes, the previously radially symmetrical primordia become anterior-posterior (A-P) asymmetrical and develop a proximo-distal (P-D) axis. Analysis of the molecular heterogeneity revealed a surprising parallel of molecular profiles in the A-P feather buds and the ventral-dorsal (V-D) Drosophila appendage imaginal discs. The functional significance was tested with an in vitro feather reconstitution model. Wnt-7a expression initiated all over the feather tract epithelium, intensifying as it became restricted first to the primordia domain, then to an accentuated ring pattern within the primordia border, and finally to the posterior bud. In contrast, sonic hedgehog expression was induced later as a dot within the primordia. RCAS was used to overexpress Wnt-7a in reconstituted feather explants derived from stage 29 dorsal skin to further test its function in feather formation. Control skin formed normal elongated, slender buds with A-P orientation, but Wnt-7a overexpression led to plateau-like skin appendages lacking an A-P axis. Feathers in the Wnt-7a overexpressing skin also had inhibited elongation of the P-D axes. This was not due to a lack of cell proliferation, which actually was increased although randomly distributed. While morphogenesis was perturbed, differentiation proceeded as indicated by the formation of barb ridges. Wnt-7a buds have reduced expression of anterior (Tenascin) bud markers. Middle (Notch-1) and posterior bud markers including Delta-1 and Serrate-1 were diffusely expressed. The results showed that ectopic Wnt-7a expression enhanced properties characteristic of the middle and posterior feather buds and suggest that P-D elongation of vertebrate skin appendages requires balanced interactions between the anterior and posterior buds.  相似文献   
3.
A method was developed to optimize simultaneous selection for a quantitative trait with a known QTL within a male and a female line to maximize crossbred performance from a two-way cross. Strategies to maximize cumulative discounted response in crossbred performance over ten generations were derived by optimizing weights in an index of a QTL and phenotype. Strategies were compared to selection on purebred phenotype. Extra responses were limited for QTL with additive and partial dominance effects, but substantial for QTL with over-dominance, for which optimal QTL selection resulted in differential selection in male and female lines to increase the frequency of heterozygotes and polygenic responses. For over-dominant QTL, maximization of crossbred performance one generation at a time resulted in similar responses as optimization across all generations and simultaneous optimal selection in a male and female line resulted in greater response than optimal selection within a single line without crossbreeding. Results show that strategic use of information on over-dominant QTL can enhance crossbred performance without crossbred testing.  相似文献   
4.
Single- (whole-cell patch) and two-electrode voltage-clamp techniques were used to measure transient (Ifast) and sustained (Islow) calcium currents, linear capacitance, and slow, voltage-dependent charge movements in freshly dissociated fibers of the flexor digitorum brevis (FDB) muscle of rats of various postnatal ages. Peak Ifast was largest in FDB fibers of neonatal (1-5 d) rats, having a magnitude in 10 mM external Ca of 1.4 +/- 0.9 pA/pF (mean +/- SD; current normalized by linear fiber capacitance). Peak Ifast was smaller in FDB fibers of older animals, and by approximately 3 wk postnatal, it was so small as to be unmeasurable. By contrast, the magnitudes of Islow and charge movement increased substantially during postnatal development. Peak Islow was 3.6 +/- 2.5 pA/pF in FDB fibers of 1-5-d rats and increased to 16.4 +/- 6.5 pA/pF in 45-50-d-old rats; for these same two age groups, Qmax, the total mobile charge measurable as charge movement, was 6.0 +/- 1.7 and 23.8 +/- 4.0 nC/microF, respectively. As both Islow and charge movement are thought to arise in the transverse-tubular system, linear capacitance normalized by the area of fiber surface was determined as an indirect measure of the membrane area of the t-system relative to that of the fiber surface. This parameter increased from 1.5 +/- 0.2 microF/cm2 in 2-d fibers to 2.9 +/- 0.4 microF/cm2 in 44-d fibers. The increases in peak Islow, Qmax, and normalized linear capacitance all had similar time courses. Although the function of Islow is unknown, the substantial postnatal increase in its magnitude suggests that it plays an important role in the physiology of skeletal muscle.  相似文献   
5.
Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was initially to delineate further the binding mechanisms for each CAM. Antibodies to Ng-CAM and N-CAM each inhibited brain membrane vesicle aggregation but the binding mechanisms of the two CAMs differed. As expected from the known homophilic binding mechanism of N-CAM, anti-N- CAM-coated vesicles did not co-aggregate with uncoated vesicles. Anti- Ng-CAM-coated vesicles readily co-aggregated with uncoated vesicles in accord with a postulated heterophilic binding mechanism. It was also shown that N-CAM was not a ligand for Ng-CAM. In contrast to assays with brain membrane vesicles, cellular systems can reveal functional differences for each CAM reflecting its relative amount (prevalence modulation) and location (polarity modulation). Consistent with this, each of the three cellular processes examined in vitro was preferentially inhibited only by anti-N-CAM or by anti-Ng-CAM antibodies. Both neurite fasciculation and the migration of cerebellar granule cells were preferentially inhibited by anti-Ng-CAM antibodies. Anti-N-CAM antibodies inhibited the formation of histological layers in the retina. The data on perturbation by antibodies were correlated with the relative levels of expression of Ng-CAM and N-CAM in each of these different neural regions. Quantitative immunoblotting experiments indicated that the relative Ng-CAM/N-CAM ratios in comparable extracts of brain, dorsal root ganglia, and retina were respectively 0.32, 0.81, and 0.04. During culture of dorsal root ganglia in the presence of nerve growth factor, the Ng-CAM/N-CAM ratio rose to 4.95 in neurite outgrowths and 1.99 in the ganglion proper, reflecting both polarity and prevalence modulation. These results suggest that the relative ability of anti-Ng-CAM and anti-N-CAM antibodies to inhibit cell-cell interactions in different neural tissues is strongly correlated with the local Ng-CAM/N-CAM ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
6.
7.
Our reported data on the cortical inhibitory actions of prostaglandin F (PGF) and the diversity of data in the literature on cerebral PG actions are examined here in the light of intracellular recording which provides the requisite membrane data for the first time. Thus, 1) intracellular recording from the cat cerebral cortex is obtained for the actions of PGF and for norepinephrine (NE) and serotonin (5HT). 2) The parallel changes in firing and polarization and the simultaneous transmembrane conductance changes are qualitatively identical for PGF, NE and 5HT. 3) The reduction in firing accompanied by hyperpolarization indicates that PGF, NE and 5HT all inhibit these cells. 4) The ionic species responsible for this inhibition is such that it increased the transmembrane resistance, and this was true for all three. 5) The changes in membrane parameters, identical in direction for PGF and NE, but stronger for the latter, constitute conditions that can lead to competitive inhibition and therefore conote, presumably, actions at the same or related receptors. Such competition with evoked cortical field potentials is shown in the preceding paper.  相似文献   
8.

Background

Influenza pandemic remains a serious threat to human health. Viruses of avian origin, H5N1, H7N7 and H9N2, have repeatedly crossed the species barrier to infect humans. Recently, a novel strain originated from swine has evolved to a pandemic. This study aims at improving our understanding on the pathogenic mechanism of influenza viruses, in particular the role of non-structural (NS1) protein in inducing pro-inflammatory and apoptotic responses.

Methods

Human lung epithelial cells (NCI-H292) was used as an in-vitro model to study cytokine/chemokine production and apoptosis induced by transfection of NS1 mRNA encoded by seven infleunza subtypes (seasonal and pandemic H1, H2, H3, H5, H7, and H9), respectively.

Results

The results showed that CXCL-10/IP10 was most prominently induced (> 1000 folds) and IL-6 was slightly induced (< 10 folds) by all subtypes. A subtype-dependent pattern was observed for CCL-2/MCP-1, CCL3/MIP-1α, CCL-5/RANTES and CXCL-9/MIG; where induction by H5N1 was much higher than all other subtypes examined. All subtypes induced a similar temporal profile of apoptosis following transfection. The level of apoptosis induced by H5N1 was remarkably higher than all others. The cytokine/chemokine and apoptosis inducing ability of the 2009 pandemic H1N1 was similar to previous seasonal strains.

Conclusions

In conclusion, the NS1 protein encoded by H5N1 carries a remarkably different property as compared to other avian and human subtypes, and is one of the keys to its high pathogenicity. NCI-H292 cells system proves to be a good in-vitro model to delineate the property of NS1 proteins.
  相似文献   
9.
For a finite locus model, Markov chain Monte Carlo (MCMC) methods can be used to estimate the conditional mean of genotypic values given phenotypes, which is also known as the best predictor (BP). When computationally feasible, this type of genetic prediction provides an elegant solution to the problem of genetic evaluation under non-additive inheritance, especially for crossbred data. Successful application of MCMC methods for genetic evaluation using finite locus models depends, among other factors, on the number of loci assumed in the model. The effect of the assumed number of loci on evaluations obtained by BP was investigated using data simulated with about 100 loci. For several small pedigrees, genetic evaluations obtained by best linear prediction (BLP) were compared to genetic evaluations obtained by BP. For BLP evaluation, used here as the standard of comparison, only the first and second moments of the joint distribution of the genotypic and phenotypic values must be known. These moments were calculated from the gene frequencies and genotypic effects used in the simulation model. BP evaluation requires the complete distribution to be known. For each model used for BP evaluation, the gene frequencies and genotypic effects, which completely specify the required distribution, were derived such that the genotypic mean, the additive variance, and the dominance variance were the same as in the simulation model. For lowly heritable traits, evaluations obtained by BP under models with up to three loci closely matched the evaluations obtained by BLP for both purebred and crossbred data. For highly heritable traits, models with up to six loci were needed to match the evaluations obtained by BLP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号