首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
BRAFV600E mutations are involved in the development of melanoma, colon cancer, and papillary thyroid carcinoma. These mutations are also found in primary brain tumors at low to moderate frequencies. In this study, we investigated a series of brain tumors to determine the prevalence and associated clinicopathologic features of BRAFV600E mutations. By direct sequencing, we analyzed 223 brain tumors, including 51 gangliogliomas (GGs), 45 pilocytic astrocytomas (PAs), 12 pleomorphic xanthoastrocytomas (PXAs), 35 glioblastomas (GBs), 28 anaplastic astrocytomas (AAs), 44 oligodendroglial tumors (ODGs), 3 anaplastic oligoastrocytomas, and 5 diffuse astrocytomas. Thirty-six cases (16.1%) exhibited the BRAFV600E mutation, including 66.7% of PXAs, 23.5% of GGs, 15.6% of PAs, and 9.7% of the malignant gliomas; the latter included 14.3% of AAs, 8.6% of GBs, and 4.5% of ODGs. Copy number aberration at the 7q34 (BRAF) locus was found in 73.1% of PAs and 50% of PXAs. 9p Homozygous deletion was found in 66.7% of PXAs, but it was not correlated with the BRAFV600E mutation. Patients' age, sex, histologic grade, and progression-free survival were also not correlated with the BRAFV600E mutation. The BRAFV600E mutation in brain tumors did not have prognostic value but is certainly a diagnostic marker and therapeutic target, not only for pediatric low-grade gliomas but also for malignant gliomas, even though the rate of mutation was not high. These results should be verified in a larger study with more cases and a longer follow-up period to overcome the limitation of small sample size.  相似文献   
3.

Purpose

To evaluate the usefulness of dynamic susceptibility contrast (DSC) enhanced perfusion MR imaging in predicting major genetic alterations in glioblastomas.

Materials and Methods

Twenty-five patients (M:F = 13∶12, mean age: 52.1±15.2 years) with pathologically proven glioblastoma who underwent DSC MR imaging before surgery were included. On DSC MR imaging, the normalized relative tumor blood volume (nTBV) of the enhancing solid portion of each tumor was calculated by using dedicated software (Nordic TumorEX, NordicNeuroLab, Bergen, Norway) that enabled semi-automatic segmentation for each tumor. Five major glioblastoma genetic alterations (epidermal growth factor receptor (EGFR), phosphatase and tensin homologue (PTEN), Ki-67, O6-methylguanine-DNA methyltransferase (MGMT) and p53) were confirmed by immunohistochemistry and analyzed for correlation with the nTBV of each tumor. Statistical analysis was performed using the unpaired Student t test, ROC (receiver operating characteristic) curve analysis and Pearson correlation analysis.

Results

The nTBVs of the MGMT methylation-negative group (mean 9.5±7.5) were significantly higher than those of the MGMT methylation-positive group (mean 5.4±1.8) (p = .046). In the analysis of EGFR expression-positive group, the nTBVs of the subgroup with loss of PTEN gene expression (mean: 10.3±8.1) were also significantly higher than those of the subgroup without loss of PTEN gene expression (mean: 5.6±2.3) (p = .046). Ki-67 labeling index indicated significant positive correlation with the nTBV of the tumor (p = .01).

Conclusion

We found that glioblastomas with aggressive genetic alterations tended to have a high nTBV in the present study. Thus, we believe that DSC-enhanced perfusion MR imaging could be helpful in predicting genetic alterations that are crucial in predicting the prognosis of and selecting tailored treatment for glioblastoma patients.  相似文献   
4.

Purpose

To assess the prognosis predictability of a measurable enhancing lesion using histogram parameters produced by the normalized cerebral blood volume (nCBV) and normalized apparent diffusion coefficient (nADC) after completion of standard concomitant chemoradiotherapy (CCRT) and adjuvant temozolomide (TMZ) medication in glioblastoma multiforme (GBM) patients.

Materials and Methods

This study was approved by the institutional review board (IRB), and the requirement for informed consent was waived. A total of 59 patients with newly diagnosed GBM who received standard CCRT with TMZ and adjuvant TMZ for six cycles underwent perfusion-weighted and diffusion-weighted imaging. Twenty-seven patients had a measurable enhancing lesion and 32 patients lacked a measurable enhancing lesion based on the Response Assessment in Neuro-Oncology (RANO) criteria in the follow-up MRI, which was performed within 3 months after adjuvant TMZ therapy was completed. We measured the nCBV and nADC histogram parameters based on the measurable enhancing lesion. The progression free survival (PFS) was analyzed by the Kaplan-Meier method with the use of the log-rank test.

Results

The median PFS of patients lacking measurable enhancing lesion was longer than for those with measurable enhancing lesions (17.6 vs 3.3 months, P<.0001). There was a significant, positive correlation between the 99th percentile nCBV value of a measurable enhancing lesion and the PFS (P = .044, R2 = .152). In addition, the median PFS was longer in patients with a 99th percentile nCBV value ≧4.5 than it was in those with a value <4.5 (4.4 vs 3.1 months, P = .036).

Conclusion

We found that the nCBV value can be used for the prognosis prediction of a measurable enhancing lesion after the completion of standard treatment for GBM, wherein a high 99th percentile nCBV value (≧4.5) suggests a better PFS for GBM patients.  相似文献   
5.
Glioblastoma (GBM) with oligodendroglioma component (GBMO) is a newly described GBM subtype in the 2007 World Health Organization classification. However, its biological and genetic characteristics are largely unknown. We investigated the clinicopathological and molecular features of 34 GBMOs and compared the survival rate of these patients with those of patients with astrocytoma, oligodendroglioma, anaplastic oligoastrocytoma (AOA), and conventional GBMs in our hospital. GBMO could be divided into two groups based on the presence of an IDH1 mutation. The IDH1 mutation was more frequently found in secondary GBMO, which had lower frequencies of EGFR amplification but higher MGMT methylation than the wild type IDH1 group, and patients with mutant IDH1 GBMO were on average younger than those with wild-type IDH1. Therefore, GBMO is a clinically and molecularly heterogeneous subtype, largely belonging to a proneural and classical subtype of GBM. The survival rate of GBMO patients itself was worse than that of AOA patients but not significantly better than that of conventional GBM patients. GBMO survival was independent of the dominant histopathological subtype i.e., astrocyte-dominant or oligodendroglioma -dominant, but it was significantly associated with the IDH1 mutation and MGMT methylation status. Therefore, GBMO should be regarded as a separate entity from AOA and must be classified as a subtype of GBM. However, further study is needed to determine whether it is a pathologic variant or a pattern of GBM because GBMO has a similar prognosis to conventional GBMs.  相似文献   
6.
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) are frequently found in brain tumors, and the resulting onco–metabolite, 2–hydroxyglutarate (2HG), has been suggested to be a potential diagnostic and prognostic biomarker of the diseases. Indeed, recent studies have demonstrated the feasibility of non–invasively detecting 2HG by using proton magnetic resonance spectroscopy (1H–MRS). Due to severe spectral overlaps of 2HG with its background metabolites and spectral baselines, however, the majority of those previous studies employed spectral editing methods with long echo times (TEs) instead of the most commonly used short TE approach with spectral fitting. Consequently, the results obtained with spectral editing methods may potentially be prone to errors resulting from substantial signal loss due to relaxation. Given that the spectral region where the main signal of 2HG resides is particularly sensitive to spectral baseline in metabolite quantification, we have investigated the impact of incorporating voxel–specifically measured baselines into the spectral basis set on the performance of the conventional short TE approach in 2HG detection in rodent models (Fisher 344 rats; n = 19) of IDH1/2 mutant–overexpressing F98 glioma at 9.4T. Metabolite spectra were acquired (SPECIAL sequence) for a tumor region and the contralateral normal region of the brain for each animal. For the estimation of spectral baselines metabolite–nulled spectra were obtained (double–inversion–recovery SPECIAL sequence) for each individual voxels. Data were post–processed with and without the measured baselines using MRUI and LCModel—the two most widely used data post–processing packages. Our results demonstrate that in–vivo detection of 2HG using the conventional short TE approach is challenging even at 9.4T. However, incorporation of voxel–specifically measured spectral baselines may potentially improve its performance. Upon more thorough validation in a larger number of animals and more importantly in human patients, the potential utility of the proposed short TE acquisition with voxel–specific baseline measurement approach in 2HG detection may need to be considered in the study design.  相似文献   
7.
To evaluate the mechanism of the development of therapeutic resistance after temozolomide treatment, we focused on changes in O6-methylguanine DNA methyltransferase (MGMT) and mismatch repair (MMR) between initial and recurrent glioblastomas. Tissue samples obtained from 24 paired histologically confirmed initial and recurrent adult glioblastoma patients who were initially treated with temozolomide were used for MGMT and MMR gene promoter methylation status and protein expression analysis using methylation-specific multiplex ligation probe amplification (MS-MLPA), methylation-specific polymerase chain reaction (MSP), and immunohistochemical staining. There was a significant decrease in the methylation ratio of the MGMT promoter determined by MS-MLPA, which was not detectable with MSP, and MGMT protein expression changes were not remarkable. However, there was no epigenetic variability in MMR genes, and a relatively homogeneous expression of MMR proteins was observed in initial and recurrent tumors. We conclude that the development of reduced methylation in the MGMT promoter is one of the mechanisms for acquiring therapeutic resistance after temozolomide treatment in glioblastomas.  相似文献   
8.

Purpose

To compare the reproducibilities of manual and semiautomatic segmentation method for the measurement of normalized cerebral blood volume (nCBV) using dynamic susceptibility contrast-enhanced (DSC) perfusion MR imaging in glioblastomas.

Materials and Methods

Twenty-two patients (11 male, 11 female; 27 tumors) with histologically confirmed glioblastoma (WHO grade IV) were examined with conventional MR imaging and DSC imaging at 3T before surgery or biopsy. Then nCBV (means and standard deviations) in each mass was measured using two DSC MR perfusion analysis methods including manual and semiautomatic segmentation method, in which contrast-enhanced (CE)-T1WI and T2WI were used as structural imaging. Intraobserver and interobserver reproducibility were assessed according to each perfusion analysis method or each structural imaging. Interclass correlation coefficient (ICC), Bland-Altman plot, and coefficient of variation (CV) were used to evaluate reproducibility.

Results

Intraobserver reproducibilities on CE-T1WI and T2WI were ICC of 0.74–0.89 and CV of 20.39–36.83% in manual segmentation method, and ICC of 0.95–0.99 and CV of 8.53–16.19% in semiautomatic segmentation method, repectively. Interobserver reproducibilites on CE-T1WI and T2WI were ICC of 0.86–0.94 and CV of 19.67–35.15% in manual segmentation method, and ICC of 0.74–1.0 and CV of 5.48–49.38% in semiautomatic segmentation method, respectively. Bland-Altman plots showed a good correlation with ICC or CV in each method. The semiautomatic segmentation method showed higher intraobserver and interobserver reproducibilities at CE-T1WI-based study than other methods.

Conclusion

The best reproducibility was found using the semiautomatic segmentation method based on CE-T1WI for structural imaging in the measurement of the nCBV of glioblastomas.  相似文献   
9.
The purpose of our study was to determine the frequency and severity of intracerebral hemorrhages and T2 hyperintense white matter lesions (WMLs) following radiation therapy for brain tumors in adult patients. Of 648 adult brain tumor patients who received radiation therapy at our institute, magnetic resonance (MR) image data consisting of a gradient echo (GRE) and FLAIR T2-weighted image were available three and five years after radiation therapy in 81 patients. Intracerebral hemorrhage was defined as a hypointense dot lesion appearing on GRE images after radiation therapy. The number and size of the lesions were evaluated. The T2 hyperintense WMLs observed on the FLAIR sequences were graded according to the extent of the lesion. Intracerebral hemorrhage was detected in 21 (25.9%) and 35 (43.2) patients in the three- and five-year follow-up images, respectively. The number of intracerebral hemorrhages per patient tended to increase as the follow-up period increased, whereas the size of the intracerebral hemorrhages exhibited little variation over the course of follow-up. T2 hyperintense WMLs were observed in 27 (33.3%) and 32 (39.5) patients in the three and five year follow-up images, respectively. The age at the time of radiation therapy was significantly higher (p < 0.001) in the patients with T2 hyperintense WMLs than in those without lesions. Intracerebral hemorrhages are not uncommon in adult brain tumor patients undergoing radiation therapy. The incidence and number of intracerebral hemorrhages increased over the course of follow-up. T2 hyperintense WMLs were observed in more than one-third of the study population.  相似文献   
10.
Background

Methylation plays an important role in the etiology and pathogenesis of colorectal cancer (CRC). This study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) and pathways in CRC by comprehensive bioinformatics analysis.

Methods

Data of gene expression microarrays (GSE68468, GSE44076) and gene methylation microarrays (GSE29490, GSE17648) were downloaded from GEO database. Aberrantly methylated-DEGs were obtained by GEO2R. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. MCODE was used for module analysis of the PPI network.

Results

Totally 411 hypomethylation-high expression genes were identified, which were enriched in biological processes of response to wounding or inflammation, cell proliferation and adhesion. Pathway enrichment showed cytokine–cytokine receptor interaction, p53 signaling and cell cycle. The top 5 hub genes of PPI network were CAD, CCND1, ATM, RB1 and MET. Additionally, 239 hypermethylation-low expression genes were identified, which demonstrated enrichment in biological processes including cell–cell signaling, nerve impulse transmission, etc. Pathway analysis indicated enrichment in calcium signaling, maturity onset diabetes of the young, cell adhesion molecules, etc. The top 5 hub genes of PPI network were EGFR, ACTA1, SST, ESR1 and DNM2. After validation in TCGA database, most hub genes still remained significant.

Conclusion

In summary, our study indicated possible aberrantly methylated-differentially expressed genes and pathways in CRC by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of CRC. Hub genes including CAD, CCND1, ATM, RB1, MET, EGFR, ACTA1, SST, ESR1 and DNM2 might serve as aberrantly methylation-based biomarkers for precise diagnosis and treatment of CRC in the future.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号