首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   6篇
  2022年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
2.
Genetic Diversity of Ostreopsis ovata (Dinophyceae) from Malaysia   总被引:1,自引:0,他引:1  
The genus Ostreopsis is an important component of benthic and epiphytic dinoflagellate assemblages in coral reefs and seaweed beds of Malaysia. Members of the species may produce toxins that contribute to ciguatera fish poisoning. In this study, two species have been isolated and cultured, Ostreopsis ovata and Ostreopsis lenticularis. Analyses of the 5.8S subunit and internal transcribed spacer regions ITS1 and ITS2 of the ribosomal RNA gene sequences of these two species showed that they are separate species, consistent with morphological designations. The nucleotide sequences of the 5.8S subunit and ITS1 and ITS2 regions of the rRNA gene were also used to evaluate the interpopulation and intrapopulation genetic diversity of O. ovata found in Malaysian waters. Results showed a low level of sequence divergence within populations. At the interpopulation level, the rRNA gene sequence distinguished two groups of genetically distinct strains, representative of a Malacca Straits group (isolates from Port Dickson) and a South China Sea group (isolates from Pulau Redang and Kota Kinabalu). Part of the sequences in the ITS regions may be useful in the design of oligonucleotide probes specific for each group. Results from this study show that the ITS regions can be used as genetic markers for taxonomic, biogeographic, and fine-scale population studies of this species. Received September 15, 2000; accepted December 15, 2000  相似文献   
3.
Moffitt’s theory of delinquency suggests that at-risk youths can be divided into two groups, the adolescence- limited group and the life-course-persistent group, predetermined at a young age, and social interactions between these two groups become important during the adolescent years. We built an agent-based model based on the microscopic interactions Moffitt described: (i) a maturity gap that dictates (ii) the cost and reward of antisocial behavior, and (iii) agents imitating the antisocial behaviors of others more successful than themselves, to find indeed the two groups emerging in our simulations. Moreover, through an intervention simulation where we moved selected agents from one social network to another, we also found that the social network plays an important role in shaping the life course outcome.  相似文献   
4.
The phylogenetic relationship of the thecate PSP-toxin producing dinoflagellate Alexandrium tamiyavanichii Balech to other species of Alexandrium was studied based on nucleotide sequences of the ITS1, ITS2, 5.8S, 18S and 28S subunits of the ribosomal RNA gene. These are the first such sequences available for A. tamiyavanichii, which is one of the producers of paralytic shellfish poisoning toxins in tropical waters. Based on the nucleotide sequences of the 28S, 18S and 5.8S subunits of the rRNA gene, A. tamiyavanichii grouped together with A. tamarense, A. catenella and A. fundyense. More interestingly, A. tamiyavanichii was most closely affiliated to A. tamarense isolates from Thailand. This result reaffirmed conclusions from previous studies that, for the A. tamarense/fundyense/catenella species complex, geographical origin rather than morphology seems to determine genetic relatedness. Results of this study also suggest that A. tamiyavanichii most probably belongs to the same species complex. Ribosomal RNA gene sequences do not separate the PSP toxin producing from the non-producing species of Alexandrium.  相似文献   
5.
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.  相似文献   
6.
The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium‐like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop‐shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.  相似文献   
7.
8.
Effects of nitrogen to phosphorous (N/P) ratios of two nitrogen sources (nitrate and ammonium) on growth and toxin production of a tropical estuarine dinoflagellate, Alexandrium minutum Halim, were examined using a strain isolated from a bloom at Tumpat Estuary, Malaysia in September 2001. Experiments were carried out in batch cultures, using either nitrate (N-NO3) or ammonium (N-NH4) as the nitrogen source at a constant amount, and with initial N/P ratios ranging from 5 to 500. Cell density, residual N and P in the medium, cellular toxin quota (Q t), and toxin composition were analyzed throughout the growths. Our results showed that cell densities and growth rates of A. minutum were severely suppressed under high N/P ratios (>100) in both N-NO3 and N-NH4 treatments. Cells tended to be larger at lower growth rate and P-limited cultures. Toxin profile was relatively constant throughout the experiments, with GTX4/GTX1 as the dominant toxin congeners. Cellular toxin quota (Q t) increased with elevated N/P ratios in both N-NO3 and N-NH4 treatments. Toxin production rate, R tox, however was enhanced in N-NH4-grown cultures when P was limited, but showed no difference between N-NO3- and N-NH4-grown cultures when P was replete. Our results clearly showed that N/P ratios as well as the nitrogen compounds not only affected the growth of A. minutum, but also the cellular toxin quota and its toxin production rate.  相似文献   
9.
The two tropical estuarine dinoflagellates, Alexandrium tamiyavanichii Balech and A. minutum Halim, were used to determine the ecophysiological adaptations in relation to their temperate counterparts. These species are the two main causative organisms responsible for the incidence of paralytic shellfish poisoning (PSP) in Southeast Asia. The effects of light (10, 40, 60, and 100 μmol photons·m?2·s?1) and temperature (15, 20, and 25°C) on the growth, nitrate assimilation, and PST production of these species were investigated in clonal batch cultures over the growth cycle. The growth rates of A. tamiyavanichii and A. minutum increased with increasing temperature and irradiance. The growth of A. tamiyavanichii was depressed at lower temperature (20°C) and irradiance (40 μmol photons·m?2·s?1). Both species showed no net growth at 10 μmol photons·m?2·s?1 and a temperature of 15°C, although cells remained alive. Cellular toxin quotas (Qt) of A. tamiyavanichii and A. minutum varied in the range of 60–180 and 10–42 fmol PST·cell?1, respectively. Toxin production rate, Rtox, increased with elevated light at both 20 and 25°C, with a pronounced effect observed at exponential phase in both species (A. tamiyavanichii, r2=0.95; A. minutum, r2=0.96). Toxin production rate also increased significantly with elevated temperature (P<0.05) for both species examined. We suggest that the ecotypic variations in growth adaptations and toxin production of these Malaysian strains may reveal a unique physiological adaptation of tropical Alexandrium species.  相似文献   
10.
The occurrence of Alexandrium taylori and Alexandrium peruvianum is reported for the first time in Malaysia waters. The Malaysian A. taylori isolates were pyriform in shape with a transdiameter range of 36–40 μm and a cell length range of 33–37 μm. The first apical plate (1′) was pentagonal with two distinctive anterior margins. No direct connection between 1′ and the apical pore complex was observed. The posterior sulcal plate (S.p.) was large, elongated and oblique to the right with anterior projections. The ventral pore (vp) was relatively large and situated at a confluence point of 1′, the second apical (2′) and the fourth apical (4′) plates. Cells of A. peruvianum were slightly anteriorly and posteriorly compressed. S.p. had an irregular pentagonal shape, with the anterior margin divided into 2 portions. 1′ was boomerang-shaped with a large and truncated ventral pore in the middle right margin. The anterior right margin of 1′ was straight. The sixth precingular plate (6″) was wider than long. The anterior sulcal plate (S.a.) was triangular and lacked a left portion extension. In laboratory cultures, both A. taylori and A. peruvianum produced paralytic shellfish toxins, with GTX4 and GTX6 as the predominant toxin, respectively. This is the first report of PSP toxins production for both species as well as the occurrences in Malaysia waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号