首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   38篇
  2024年   1篇
  2023年   7篇
  2022年   20篇
  2021年   28篇
  2020年   11篇
  2019年   18篇
  2018年   11篇
  2017年   12篇
  2016年   21篇
  2015年   28篇
  2014年   26篇
  2013年   32篇
  2012年   38篇
  2011年   24篇
  2010年   15篇
  2009年   11篇
  2008年   21篇
  2007年   21篇
  2006年   8篇
  2005年   13篇
  2004年   12篇
  2003年   13篇
  2002年   6篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1984年   1篇
  1979年   1篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
1.
2.
Copper is an essential yet toxic metal ion. To satisfy cellular requirements, while, at the same time, minimizing toxicity, complex systems of copper trafficking have evolved in all cell types. The best conserved and most widely distributed of these involve Atx1-like chaperones and P1B-type ATPase transporters. Here, we discuss current understanding of how these chaperones bind Cu(I) and transfer it to the Atx1-like N-terminal domains of their cognate transporter.  相似文献   
3.
To investigate the relationship between a protein’s sequence and its biophysical properties, we studied the effects of more than 100 mutations in Avena sativa light-oxygen-voltage domain 2, a model protein of the Per-Arnt-Sim family. The A. sativa light–oxygen–voltage domain 2 undergoes a photocycle with a conformational change involving the unfolding of the terminal helices. Whereas selection studies typically search for winners in a large population and fail to characterize many sites, we characterized the biophysical consequences of mutations throughout the protein using NMR, circular dichroism, and ultraviolet/visible spectroscopy. Despite our intention to introduce highly disruptive substitutions, most had modest or no effect on function, and many could even be considered to be more photoactive. Substitutions at evolutionarily conserved sites can have minimal effect, whereas those at nonconserved positions can have large effects, contrary to the view that the effects of mutations, especially at conserved positions, are predictable. Using predictive models, we found that the effects of mutations on biophysical function and allostery reflect a complex mixture of multiple characteristics including location, character, electrostatics, and chemistry.  相似文献   
4.
We present the three-dimensional (3D) solution structure of a calcium-binding protein from Entamoeba histolytica (EhCaBP), an etiologic agent of amoebiasis affecting millions worldwide. EhCaBP is a 14.7 kDa (134 residues) monomeric protein thought to play a role in the pathogenesis of amoebiasis. The 3D structure of Ca(2+)-bound EhCaBP has been derived using multidimensional nuclear magnetic resonance (NMR) spectroscopic techniques. The study reveals the presence of two globular domains connected by a flexible linker region spanning 8 amino acid residues. Each domain consists of a pair of helix-loop-helix motifs similar to the canonical EF-hand motif of calcium-binding proteins. EhCaBP binds to four Ca(2+) with high affinity (two in each domain), and it is structurally related to calmodulin (CaM) and troponin C (TnC) despite its low sequence homology ( approximately 29%) with these proteins. NMR-derived structures of EhCaBP converge within each domain with low RMSDs and angular order-parameters for backbone torsion angles close to 1.0. However, the presence of a highly flexible central linker region results in an ill-defined orientation of the two domains relative to one other. These findings are supported by backbone (15)N relaxation rate measurements and deuterium exchange studies, which reveal low structural order parameters for residues in the central linker region. Earlier, biochemical studies showed that EhCaBP is involved in a novel signal transduction mechanism, distinct from CaM. A possible reason for such a functional diversity is revealed by a detailed comparison of the 3D structure of EhCaBP with that of CaM and TnC. The studies indicate a more open C-terminal domain for EhCaBP with larger water exposed total hydrophobic surface area as compared to CaM and TnC. Further dissimilarities between the structures include the presence of two Gly residues (G63 and G67) in the central linker region of EhCaBP, which seem to impart it a greater flexibility compared to CaM and TnC and also play crucial role in its biological function. Thus, unlike in CaM and TnC, wherein the length and/or composition of the central linker have been found to be crucial for their function, in EhCaBP, both flexibility as well as amino acid composition is required for the function of the protein.  相似文献   
5.
6.
Summary Calculations indicate that the maximum daily solar radiation reaching the Martian surface is about 325 cal/cm2 during southern hemisphere summer at latitude of about 40°S. In the ultraviolet region of the spectrum, the radiation reaching the surface at wavelengths greater than 2800 Å is within 10% of the radiation incident on the atmosphere. There is significant extinction of radiation in the spectral region near 2500 Å in mid and high latitudes due to absorption of radiation by ozone; radiation reaching the surface may be reduced to one one-thousandth of that incident on the atmosphere during winter. Virtually no radiation of wavelengths less than 1900 Å reaches the surface because of absorption by the large column abundance of carbon dioxide. Daily and latitudinal distributions of radiation are presented for wavelengths of 3000, 2500 and 2000 Å.  相似文献   
7.
With the aim of understanding the structural basis for the substrate specificity of collagen prolyl 4-hydroxylase, we have studied the conformational features of synthetic oligopeptide substrates and their interaction with the enzyme purified from chicken embryo. Circular dichroism and infrared spectral data, taken in conjunction with relevant crystal structure data, indicated an equilibrium mixture of the polyproline-II (PP-II) helix, the beta-turn, and the random coil conformations in aqueous and trifluoroethanol solutions of the "collagen-related" peptides: t-Boc-Pro-Pro-Gly-Pro-OH, t-Boc-Pro-Pro-Gly-Pro-NHCH3, t-Pro-Pro-Gly-Pro-Pro-OH, t-Boc-Pro-Pro-Ala-Pro-OH, and t-Boc-Pro-Pro-Gln-Pro-OCH3, where t-Boc is tert-butoxycarbonyl. In another set of peptides related to elastin, t-Boc-Val-Pro-Gly-Val-OH and t-Boc-Gly-Val-Pro-Gly-Val-OH, the data indicated the beta-structure, rather than the PP-II helix, was in equilibrium with the beta-turn. Kinetic parameters for the enzymatic hydroxylation of the peptides showed that as a group, the first (proline-rich) set of peptides has higher Km values and lower Vmax and Kcat/Km values than the valine-rich peptides. Data on the inhibition of hydroxylation of the standard assay substrate (Pro-Pro-Gly)10 by the oligopeptides pointed to common binding sites for the peptides. Hydroxyproline-containing peptides had no effect on the hydroxylation of the standard substrate, showing the absence of product inhibition. Based on these and earlier data, we propose that in collagen and related peptides, a supersecondary structure consisting of the PP-II helix followed by the beta-turn is the minimal structural requirement for proline hydroxylation. The PP-II structure would aid effective interaction at the substrate binding subsites, while the beta-turn would be essential at the catalytic site of the enzyme. In elastin and related peptides, the beta-strand structure may be interchangeable with the PP-II structure. This conformational model for proline hydroxylation resolves the discrepancies in earlier proposals on the substrate specificity of prolyl 4-hydroxylase. It is also consistent with the available information on the active site geometry of the enzyme.  相似文献   
8.
9.
10.
Methane is a powerful greenhouse gas but the microbial diversity mediating methylotrophic methanogenesis is not well-characterized. One overlooked route to methane is via the degradation of dimethylsulfide (DMS), an abundant organosulfur compound in the environment. Methanogens and sulfate-reducing bacteria (SRB) can degrade DMS in anoxic sediments depending on sulfate availability. However, we know little about the underlying microbial community and how sulfate availability affects DMS degradation in anoxic sediments. We studied DMS-dependent methane production along the salinity gradient of the Medway Estuary (UK) and characterized, for the first time, the DMS-degrading methanogens and SRB using cultivation-independent tools. DMS metabolism resulted in high methane yield (39%–42% of the theoretical methane yield) in anoxic sediments regardless of their sulfate content. Methanomethylovorans, Methanolobus and Methanococcoides were dominant methanogens in freshwater, brackish and marine incubations respectively, suggesting niche-partitioning of the methanogens likely driven by DMS amendment and sulfate concentrations. Adding DMS also led to significant changes in SRB composition and abundance in the sediments. Increases in the abundance of Sulfurimonas and SRB suggest cryptic sulfur cycling coupled to DMS degradation. Our study highlights a potentially important pathway to methane production in sediments with contrasting sulfate content and sheds light on the diversity of DMS degraders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号