首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  国内免费   7篇
  49篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   8篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
利用人粒细胞集落刺激因子(hG-CSF)cDNA3′端非翻译区(3′-UTR)中存在的DraⅠ酶切位点,通过部分酶切与完全酶切,删除3′-UTR不同长度,构建了四种hG-CSFcDNA瞬时重组表达质粒。转染COS-7细胞后,生物活性测定结果提示,hG-CSFcDNA3′-UTR对其表达起负调控作用,其关键性序列位于紧接终止密码子TGA下游的65bp范围内,3′-UTR对hG-CSFcDNA表达的影响与转录水平的差别有一定关系。  相似文献   
2.
从单细胞蓝藻钝顶螺旋藻中纯化C-藻蓝蛋白,从海洋红藻多管藻纯化R-藻红蛋白.分别用高碘酸钠氧化法和戊二醛法将二者共价连接为R-藻红蛋白-C-藻蓝蛋白交联物,再用Sephadex G-200柱层析纯化.光谱分析表明,用两种方法构建的共价交联物都可以将激发能从R-藻红蛋白传递到C-藻蓝蛋白.二者相比,高碘酸钠氧化法构建的共价交联物的能量传递效率更高.  相似文献   
3.
为从生理生化水平上探讨二化螟滞育幼虫应对温度胁迫的生理机制,分别对系列温度胁迫(STS)和梯度温度胁迫(GTS)处理后的幼虫水、脂质、总糖、小分子碳水化合物含量及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性进行了测定.结果表明:随着温度的降低,两种处理二化螟滞育幼虫虫体含水量趋于减少,且0℃以下时GTS处理下降幅度较STS处理显著;两种处理脂质含量均逐步下降且二者间无显著差异;两种处理总糖含量分别先减后增和持续下降,均检测出4种小分子碳水化合物,其中STS处理葡萄糖、甘油和果糖含量先增后减,海藻糖含量变化与此相反,而GTS处理海藻糖含量先减后增,葡萄糖和甘油含量呈相反变化,果糖含量无变化;14~-14℃范围内STS处理SOD和POD活性较GTS处理低,CAT活性相反.二化螟滞育幼虫生理指标的变化反映了其应对不同温度胁迫的生理响应.  相似文献   
4.
报道了人肿瘤坏死因子α(hTNFα)基因穿梭表达载体的构建及其在丝状体蓝藻鱼腥藻 712 0中的表达和鉴定结果 .将质粒pRL rhTNF上hTNFα的cDNA连于pRL 43 9质粒上的PpsbA启动子下游 ,得到中间载体pRL TC .进一步与穿梭质粒pDC 8重组 ,得到可在大肠杆菌和蓝藻中均可表达的穿梭表达载体pDC TNF .pRL rhTNF ,pRL TC和pDC TNF三者在大肠杆菌中的表达量分别为 11.8% ,16 9%和 15 .0 % .通过三亲接合转移将pDC TNF引入鱼腥藻 712 0中并获稳定遗传的转基因株 .从转基因的鱼腥藻 712 0中检测到pDC TNF质粒的存在 ,且在和TNFα的cDNA探针进行的Southern杂交中呈阳性反应 .抽提转基因藻的蛋白样品进行检测 ,在Western印迹中和TNFα单克隆抗体呈阳性反应 .采用TNF对L92 9细胞的细胞毒性方法 ,证明转基因藻粗提液中 ,TNF确有细胞毒活性 .  相似文献   
5.
Mutations in SHP-2 phosphatase (PTPN11) that cause hyperactivation of its catalytic activity have been identified in Noonan syndrome and various childhood leukemias. Recent studies suggest that the gain-of-function (GOF) mutations of SHP-2 play a causal role in the pathogenesis of these diseases. However, the molecular mechanisms by which GOF mutations of SHP-2 induce these phenotypes are not fully understood. Here, we show that GOF mutations in SHP-2, such as E76K and D61G, drastically increase spreading and migration of various cell types, including hematopoietic cells, endothelial cells, and fibroblasts. More importantly, in vivo angiogenesis in SHP-2 D61G knock-in mice is also enhanced. Mechanistic studies suggest that the increased cell migration is attributed to the enhanced β1 integrin outside-in signaling. In response to β1 integrin cross-linking or fibronectin stimulation, activation of ERK and Akt kinases is greatly increased by SHP-2 GOF mutations. Also, integrin-induced activation of RhoA and Rac1 GTPases is elevated. Interestingly, mutant cells with the SHP-2 GOF mutation (D61G) are more sensitive than wild-type cells to the suppression of cell motility by inhibition of these pathways. Collectively, these studies reaffirm the positive role of SHP-2 phosphatase in cell motility and suggest a new mechanism by which SHP-2 GOF mutations contribute to diseases.SHP-2, a multifunctional SH2 domain-containing protein-tyrosine phosphatase implicated in diverse cell signaling processes (13), plays a critical role in cellular function. Homozygous deletion of Exon 2 (4) or Exon 3 (5) of the SHP-2 gene (PTPN11) in mice leads to early embryonic lethality prior to and at midgestation, respectively. SHP-2 null mutant mice die much earlier, at peri-implantation (4). Exon 3 deletion mutation of SHP-2 blocks hematopoietic potential of embryonic stem cells both in vitro and in vivo (68), whereas SHP-2 null mutation causes inner cell mass death and diminished trophoblast stem cell survival (4). Recent studies on SHP-2 conditional knock-out or tissue-specific knock-out mice have further revealed an array of important functions of this phosphatase in various physiological processes (912). The phenotypes demonstrated by loss of SHP-2 function are apparently attributed to the role of SHP-2 in the cell signaling pathways induced by growth factors/cytokines. SHP-2 generally promotes signal transmission in growth factor/cytokine signaling in both catalytic-dependent and -independent fashion (13). The positive role of SHP-2 in the intracellular signaling processes, in particular, the ERK3 and PI3K/Akt kinase pathways, has been well established, although the underlying mechanism remains elusive, in particular, the signaling function of the catalytic activity of SHP-2 in these pathways is poorly understood.In addition to the role of SHP-2 in cell proliferation and differentiation, the phenotypes induced by loss of SHP-2 function may be associated with its role in cell migration. Indeed, dominant negative SHP-2 disrupts Xenopus gastrulation, causing tail truncations (13, 14). Targeted Exon 3 deletion mutation in SHP-2 results in decreased cell spreading, migration (15, 16), and impaired limb development in the chimeric mice (7). The role of SHP-2 in cell adhesion and migration has also been demonstrated by catalytically inactive mutant SHP-2-overexpressing cells (1720). The molecular mechanisms by which SHP-2 regulates these cellular processes, however, have not been well defined. For example, the role of SHP-2 in the activation of the Rho family small GTPases that is critical for cell motility is still controversial. Both positive (19, 21, 22) and negative roles (18, 23) for SHP-2 in this context have been reported. Part of the reason for this discrepancy might be due to the difference in the cell models used. Catalytically inactive mutant SHP-2 was often used to determine the role of SHP-2 in cell signaling. In the catalytically inactive mutant SHP-2-overexpressing cells, the catalytic activity of endogenous SHP-2 is inhibited. However, as SHP-2 also functions independent of its catalytic activity, overexpression of catalytically deficient SHP-2 may also increase its scaffolding function, generating complex effects.The critical role of SHP-2 in cellular function is further underscored by the identification of SHP-2 mutations in human diseases. Genetic lesions in PTPN11 that cause hyperactivation of SHP-2 catalytic activity have been identified in the developmental disorder Noonan syndrome (24) and various childhood leukemias, including juvenile myelomonocytic leukemia (JMML), B cell acute lymphoblastic leukemia, and acute myeloid leukemia (25, 26). In addition, activating mutations in SHP-2 have been identified in sporadic solid tumors (27). The SHP-2 mutations appear to play a causal role in the development of these diseases as SHP-2 mutations and other JMML-associated Ras or Neurofibromatosis 1 mutations are mutually exclusive in the patients (2427). Moreover, single SHP-2 gain-of-function (GOF) mutations are sufficient to induce Noonan syndrome, cytokine hypersensitivity in hematopoietic progenitor cells, and JMML-like myeloproliferative disease in mice (2832). Gain-of-function cell models derived from the newly available SHP-2 GOF mutation (D61G) knock-in mice (28) now provide us with a good opportunity to clarify the role of SHP-2 in cell motility. Unlike the dominant negative approach in which overexpression of mutant forms of SHP-2 generates complex effects, the SHP-2 D61G knock-in model eliminates this possibility as the mutant SHP-2 is expressed at the physiological level (28). Additionally, defining signaling functions of GOF mutant SHP-2 in cell movement can also help elucidate the molecular mechanisms by which SHP-2 mutations contribute to the relevant diseases.  相似文献   
6.
Mitochondria are highly dynamic organelles that play multiple roles in cells. How mitochondria cooperatively modulate embryonic stem (ES) cell function during development is not fully understood. Global disruption of Ptpmt1, a mitochondrial Pten-like phosphatidylinositol phosphate (PIP) phosphatase, resulted in developmental arrest and postimplantation lethality. Ptpmt1(-/-) blastocysts failed to outgrow, and inner-cell-mass cells failed to thrive. Depletion of Ptpmt1 in conditional knockout ES cells decreased proliferation without affecting energy homeostasis or cell survival. Differentiation of Ptpmt1-depleted ES cells was essentially blocked. This was accompanied by upregulation of cyclin-dependent kinase inhibitors and a significant cell cycle delay. Reintroduction of wild-type but not of catalytically deficient Ptpmt1 C132S or truncated Ptpmt1 lacking the mitochondrial localization signal restored the differentiation capabilities of Ptpmt1 knockout ES cells. Intriguingly, Ptpmt1 is specifically important for stem cells, as ablation of Ptpmt1 in differentiated embryonic fibroblasts did not disturb cellular function. Further analyses demonstrated that oxygen consumption of Ptpmt1-depleted cells was decreased, while glycolysis was concomitantly enhanced. In addition, mitochondrial fusion/dynamics were compromised in Ptpmt1 knockout cells due to accumulation of PIPs. These studies, while establishing a crucial role for Ptpmt1 phosphatase in embryogenesis, reveal a mitochondrial metabolic stress-activated checkpoint in the control of ES cell differentiation.  相似文献   
7.
The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-α) gene and its expression in a cyanobacteriumAnabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDGTNF. The expression of the rhTNF gene inEscherichia coli has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced intoAnabaena sp PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with α-32P labeled hTNF cDNA probes, while the expression of the hTNF gene inAnabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic c~anobacteriumAnabaena sp. PCC 7120. Project supported by the National Natural Science Foundation of China (Grant No. 39280016).  相似文献   
8.
黄粉虫防御性分泌物化学成分的GC/MS分析   总被引:3,自引:2,他引:1  
用二氯甲烷为溶剂萃取黄粉虫成虫腹部防御性分泌物并经GC/MS法分析,检测出其中7种成分:2-甲基对苯醌、对甲酚、正二十三烷、正二十四烷、12-二十五烯、正二十五烷和正二十六烷。幼虫和蛹腹末端的体液与成虫防御性分泌物共有4种长链烷烃,幼虫另含有3种有机酸。幼虫和蛹均不含有毒性较强的2-甲基对苯醌和对甲酚,用作动物蛋白饲料较安全。对成虫分泌物中的2-甲基对苯醌和对甲酚进行了定量分析,并探讨了不同日龄和性别的成虫防御性分泌物的分泌规律及再生性特点。  相似文献   
9.
10.
Tissue culture, SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and spectra analysis were used for studying the aggregation mechanism of protoplasts from Bryopsis hypnoides Lamouroux and the discrepancy between the protoplast-regenerated plants and the wild type. The aggregation of protoplasts from B. hypnoides was observed in natural seawater and artificial seawater with different pH values, and the location and mechanism of the materials causing the aggregation were also studied. Results showed that the protoplasts could aggregate into some viable spheres in natural seawater and subsequently grow into mature individuals. Aggregation of the protoplasts depended exclusively upon the pH value (6-11), and the protoplasts aggregated best at pH 8-9. Some of the extruded protoplasts were separated into two parts by centrifugation: the pellet (PO) and the supernatant (PL). The PO could aggregate in artificial seawater (pH8.3) but not in PL. No aggregation was found in PO cultured in natural seawater containing nigericin, which can dissipate the proton gradients across the membrane. These experiments suggest that the aggregation of protoplasts is proton-gradient dependent and the materials causing the aggregation were not in the vacuolar sap, but located on the surface or inside the organelles. Furthermore, the transfer of the materials across the membrane was similar to △pH-based translocafion (△pH/TAT) pathway that occurs in the chloroplasts of higher plants and bacteria. Obvious discrepancies in both the total soluble proteins and the ratio of chlorophyll a to chlorophyll b between the regenerated B. hypnoides and the wild type were found, which may be related to the exchange of genetic material during aggregation of the organelles. In the process of development, diatom Amphora coffeaeformis Agardh attached to the protoplast aggregations, retarding their further development, and once they were removed, the aggregations immediately germinated, which showed that diatoms can affect the development of other algae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号