首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  2021年   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
Psychopathic offenders show a persistent pattern of emotional unresponsivity to the often horrendous crimes they perpetrate. Recent studies have related psychopathy to alterations in white matter. Therefore, diffusion tensor imaging followed by tract-based spatial statistics (TBSS) analysis in 11 psychopathic offenders matched to 11 healthy controls was completed. Fractional anisotropy was calculated within each voxel and comparisons were made between groups using a permutation test. Any clusters of white matter voxels different between groups were submitted to probabilistic tractography. Significant differences in fractional anisotropy were found between psychopathic offenders and healthy controls in three main white matter clusters. These three clusters represented two major networks: an amygdalo-prefrontal network, and a striato-thalamo-frontal network. The interpersonal/affective component of the PCL-R correlated with white matter deficits in the orbitofrontal cortex and frontal pole whereas the antisocial component correlated with deficits in the striato-thalamo-frontal network. In addition to replicating earlier work concerning disruption of an amygdala-prefrontal network, we show for the first time that white matter integrity in a striato-thalamo-frontal network is disrupted in psychopathic offenders. The novelty of our findings lies in the two dissociable white matter networks that map directly onto the two major factors of psychopathy.  相似文献   
2.
3.
A flux analysis model for the metabolism of neurotransmitter glutamate is constructed, in order to study functional aspects of its metabolism. This work is based on the potassium [K(+)] evoked neurotransmitter glutamate released, as measured in a series of experiments of superfused rat or mouse brain preparations. These measurements are combined with data reported, concerning the metabolism of glutamate and its precursors, glutamine and glucose in rat cerebral cells in vivo. The proposed stoichiometry of the specific reaction network renders the model solvable. The classification procedure establishes that the measured fluxes are all balanceable and all non-measured fluxes can be calculated. The system is well posed with a condition number of 7.8536. The results emphasize the importance of phosphate activated glutaminase and aspartate aminotransferase in the metabolism of neurotransmitter glutamate. Reported data on the rate of the malate-aspartate shuttle, as well as the anaplerotic flux of the glial pyruvate carboxylase reaction are in agreement with the estimations calculated from the proposed model.  相似文献   
4.
5.
The continuous threat of increasing CO2 concentration in the atmosphere has altered the carbon balance of our planet causing global climate change. Biological fixation of atmospheric CO2 by unicellular microorganisms such as microalgae is a promising technology pursued extensively by researchers as a means for carbon capture. The study aimed to provide an atomic level of study that will demonstrate the effect of the salinity on the mechanism of CO2 absorption across microalgae lipid bilayer. Molecular dynamics simulations were utilized to calculate the free energies of CO2 molecule as it permeates inside the microalgae cell. In thermodynamics, the transport process of a molecule can be demonstrated through its free energy gradient. Thus, calculating the free energies of CO2 molecule across microalgae lipid bilayer can elucidate the mechanisms of permeation processes. Four microalgae lipid bilayer structures were constructed that contains 128-DPPC (dipalmitoylphosphatidylcholine) lipid bilayer with 3640 water molecules with different NaCl concentrations: 0, 3, 13, and 19 NaCl molecules which correspond to a salinity level of 0, 50, 200, and 300 mM, respectively. The cavity insertion Widom method was used to calculate the free energy of CO2 molecule along the lipid bilayer. The results demonstrated that the salinity does not affect the free energies significantly, thus, it does not hamper CO2 transport across microalgae lipid membrane.  相似文献   
6.
Koutsiaris AG 《Biorheology》2005,42(6):479-491
Volume flow was estimated from axial erythrocyte velocity measurements in 30 mesenteric microvessels of 6 rabbits and was compared to Murray's law predictions. The diameters of capillaries and precapillary arterioles ranged between 5.6 and 12 microm. The significant pulsating flow component existing in these microvessels was taken into account by measuring instantaneous axial blood velocity throughout the course of a cardiac cycle and then averaging over the period. In addition, the effect of the velocity profile variation with diameter was taken into account, for the first time, by using a profile factor function. According to Murray's law, the relation between blood volume flow and diameter is governed by a 'cube' law. Curve fitting to volume flow and diameter data pairs for rabbits, showed a dependence of volume flow on diameter raised to the 4th power (with a correlation coefficient equal to 0.97). The above result supports the hypothesis that, in the precapillary part of microvasculature, the principle of constant longitudinal pressure gradient rather than the principle of minimum work may be valid.  相似文献   
7.
A heritable neurodegenerative disease of English Setters has long been studied as a model of human neuronal ceroid-lipofuscinosis (NCL). Megablast searches of the first build of the canine genome for potential causative genes located the CLN8 gene near the q telomere of canine chromosome 37, close to a marker previously linked to English Setter NCL. Sequence analysis of the coding region from affected dogs revealed a T-to-C transition in the CLN8 gene that predicts a p.L164P missense mutation. Leucine 164 is conserved in four other mammalian species. The C allele co-segregated with the disease phenotype in a two-generation English Setter family in a pattern consistent with autosomal recessive inheritance. All four NCL-affected family members were C/C homozygotes and all four obligate carriers were C/T heterozygotes; whereas, 103 unrelated dogs were all T/T homozygotes. These findings indicate that the CLN8 T-to-C transition is the likely cause of English Setter NCL.  相似文献   
8.
BACKGROUND: Structural variation in the neurexin-1 (NRXN1) gene increases risk for both autism spectrum disorders (ASD) and schizophrenia. However, the manner in which NRXN1 gene variation may be related to brain morphology to confer risk for ASD or schizophrenia is unknown. METHOD/PRINCIPAL FINDINGS: 53 healthy individuals between 18-59 years of age were genotyped at 11 single nucleotide polymorphisms of the NRXN1 gene. All subjects received structural MRI scans, which were processed to determine cortical gray and white matter lobar volumes, and volumes of striatal and thalamic structures. Each subject's sensorimotor function was also assessed. The general linear model was used to calculate the influence of genetic variation on neural and cognitive phenotypes. Finally, in silico analysis was conducted to assess potential functional relevance of any polymorphisms associated with brain measures. A polymorphism located in the 3' untranslated region of NRXN1 significantly influenced white matter volumes in whole brain and frontal lobes after correcting for total brain volume, age and multiple comparisons. Follow-up in silico analysis revealed that this SNP is a putative microRNA binding site that may be of functional significance in regulating NRXN1 expression. This variant also influenced sensorimotor performance, a neurocognitive function impaired in both ASD and schizophrenia. CONCLUSIONS: Our findings demonstrate that the NRXN1 gene, a vulnerability gene for SCZ and ASD, influences brain structure and cognitive function susceptible in both disorders. In conjunction with our in silico results, our findings provide evidence for a neural and cognitive susceptibility mechanism by which the NRXN1 gene confers risk for both schizophrenia and ASD.  相似文献   
9.
Mammalian target of rapamycin (mTOR) is a kinase that plays a key role in a wide array of cellular processes and exists in two distinct functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although mTORC2 is primarily activated by growth factors, mTORC1 is regulated by numerous extracellular and intracellular signals such as nutrients, growth factors, and cellular redox. Previous study has shown that cysteine oxidants sufficiently activate mTORC1 activity under amino acid-depleted conditions and that a reducing agent effectively suppresses amino acid-induced mTORC1 activity, thereby raising the possibility that redox-sensitive mechanisms underlie amino acid-dependent mTORC1 regulation. However, the molecular mechanism by which redox regulates mTORC1 activity is not well understood. In this study, we show that the redox-sensitive regulation of mTORC1 occurs via Rheb but not the Rag small GTPase. Enhancing cellular redox potential with cysteine oxidants significantly increases Rheb GTP levels. Importantly, modulation of the cellular redox potential with a cysteine oxidant or reducing agent failed to alter mTORC1 activity in TSC1(-/-) or TSC2(-/-) mouse embryonic fibroblast cells. Furthermore, a cysteine oxidant has little effect on mTOR localization but sufficiently activates mTORC1 activity in both p18(-/-) and control mouse embryonic fibroblast cells, suggesting that the redox-sensitive regulation of mTORC1 occurs independent of the Ragulator·Rag complex. Taken together, our results suggest that the TSC complex plays an important role in redox-sensitive mTORC1 regulation and argues for the activation of mTORC1 in places other than the lysosome upon inhibition of the TSC complex.  相似文献   
10.

Background  

The KEGG Pathway database is a valuable collection of metabolic pathway maps. Nevertheless, the production of simulation capable metabolic networks from KEGG Pathway data is a challenging complicated work, regardless the already developed tools for this scope. Originally used for illustration purposes, KEGG Pathways through KGML (KEGG Markup Language) files, can provide complete reaction sets and introduce species versioning, which offers advantages for the scope of cellular metabolism simulation modelling. In this project, KEGGconverter is described, implemented also as a web-based application, which uses as source KGML files, in order to construct integrated pathway SBML models fully functional for simulation purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号