首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
2.
Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small‐scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self‐recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects.  相似文献   
3.
Fidgetin is a member of the AAA protein superfamily with important roles in mammalian development. Here we show that human Fidgetin is a potent microtubule severing and depolymerizing the enzyme used to regulate mitotic spindle architecture, dynamics and anaphase A. In vitro, recombinant human Fidgetin severs taxol-stabilized microtubules along their length and promotes depolymerization, primarily from their minus-ends. In cells, human Fidgetin targets to centrosomes, and its depletion with siRNA significantly reduces the velocity of poleward tubulin flux and anaphase A chromatid-to-pole motion. In addition, the loss of Fidgetin induces a microtubule-dependent enlargement of mitotic centrosomes and an increase in the number and length of astral microtubules. Based on these data, we propose that human Fidgetin actively suppresses microtubule growth from and attachment to centrosomes.  相似文献   
4.
Persistent elevation of the intracellular free Ca(2+) concentration [Ca(2+)](i) is neurotoxic and therefore it is important to understand how it affects downstream components of the Ca(2+) signaling pathway. The response of calmodulin (CaM) and alphaCa(2+)/CaM-dependent protein kinase II (alphaCaMKII), to intracellular Ca(2+) overload in hippocampal neurons is studied by confocal imaging of fluorescently tagged proteins. Transient and persistent redistribution of CaM and alphaCaMKII together is seen from the cytosol to dendritic and somatic punctae. Typical persistent redistribution occurs following a lag of 138+/-(S.E.M.) 12 s and is complete at 460+/-(S.E.M.) 34 s (n=18), lack of Thr(286)-autophosphorylation of alphaCaMKII however promotes the formation of early transient punctae (peak at 40 s). In contrast, the T286D-mimick of phospho-Thr(286)-alphaCaMKII forms punctae with a delay >10 min, indicating that Thr(286)-autophosphorylation is antagonistic to CaMKII clustering. A two-state model is proposed in which phospho-Thr(286)-alphaCaMKII, formed immediately upon Ca(2+) stimulation, is primarily responsible for target interactions and memory functions of alphaCaMKII. However, a distinct clustering form denoted alphaCaMKII(c), generated upon persistent intracellular free Ca(2+) elevation, is deposited in the punctae which are made of self-interacting CaM/CaMKII complexes. Punctate deposition disables both the interactions and the activity of CaMKII.  相似文献   
5.
One-season fallows with legumes such as Crotalaria grahamiana Wight & Arn. and phosphorus (P) fertilization have been suggested to improve crop yields in sub-Saharan Africa. Assessing the sustainability of these measures requires a sound understanding of soil processes, especially transformations of P which is often the main limiting nutrient. We compared plant production, nitrogen (N) and P balances and selected soil properties during 5.5 years in a field experiment with three crop rotations (continuous maize, maize-crotalaria and maize-natural fallow rotation) at two levels of P fertilization (0 and 50 kg P ha?1 yr?1, applied as triple superphosphate) on a Kandiudalfic Eutrudox in western Kenya. The maize yield forgone during growth of the crotalaria fallow was compensated by higher post-fallow yields, but the cumulative total maize yield was not significantly different from continuous maize. In all crop rotations, P fertilization doubled total maize yields, increased N removal by maize and remained without effect on amounts of recycled biomass. Crotalaria growth decreased in the course of the experiment due to pest problems. The highest levels of soil organic and microbial C, N and P were found in the maize-crotalaria fallow rotation. The increase in organic P was not accompanied by a change in resin-extractable P, while H2SO4-extractable inorganic P was depleted by up to 38 kg P ha?1 (1% of total P) in the 0–50 cm layer. Microbial P increased substantially when soil was supplied with C and N in a laboratory experiment, confirming field observations that the microbial biomass is limited by C and N rather than P availability. Maize-legume fallow rotations result in a shift towards organic and microbial nutrients and have to be complemented by balanced additions of inorganic fertilizers. Abbreviations: BNF – biological nitrogen fixation; COM – continuous maize; LR – long rainy season; MCF – maize-crotalaria fallow rotation; MNF – maize-natural fallow rotation; SR – short rainy season; TSP – triple superphosphate.  相似文献   
6.
George  T.S.  Gregory  P.J.  Robinson  J.S.  Buresh  R.J.  Jama  B. 《Plant and Soil》2002,246(1):53-63
A field experiment in western Kenya assessed whether the agroforestry species Tithonia diversifolia (Hemsley) A. Gray, Tephrosia vogelii Hook f., Crotalaria grahamiana Wight & Arn. and Sesbania sesban (L) Merill. had access to forms of soil P unavailable to maize, and the consequences of this for sustainable management of biomass transfer. The species were grown in rows at high planting density to ensure the soil under rows was thoroughly permeated by roots. Soil samples taken from beneath rows were compared to controls, which included a bulk soil monolith enclosed by iron sheets within the tithonia plot, continuous maize, and bare fallow plots. Three separate plant biomass samples and soil samples were taken at 6-month intervals, over a period of 18 months. The agroforestry species produced mainly leaf biomass in the first 6 months but stem growth dominated thereafter. Consequently, litterfall was greatest early in the experiment (0–6 months) and declined with continued growth. Soil pH increased by up to 1 unit (from pH 4.85) and available P increased by up to 38% (1 g P g–1) in agroforestry plots where biomass was conserved on the field. In contrast, in plots where biomass was removed, P availability decreased by up to 15%. Coincident with the declines in litterfall, pH decreased by up to 0.26 pH units, plant available P decreased by between 0.27 and 0.72 g g–1 and Po concentration decreased by between 8 and 35 g g–1 in the agroforestry plots. Declines in Po were related to phosphatase activity (R2=0.65, P<0.05), which was greater under agroforestry species (0.40–0.50 nmol MUB s–1 g–1) than maize (0.28 nmol MUB s–1 g–1) or the bare fallow (0.25 nmol MUB s–1 g–1). Management of tithonia for biomass transfer, decreased available soil P by 0.70 g g–1 and Po by 22.82 g g–1. In this study, tithonia acquired Po that was unavailable to maize. However, it is apparent that continuous cutting and removal of biomass would lead to rapid depletion of P stored in organic forms.  相似文献   
7.
Litsea elliptica is traditionally believed to prevent and treat stomach ulcers, cancer, fever and headaches. This study investigates the phytochemical composition, antioxidant and cytotoxic effects of L. elliptica leaf extracts. The phytochemical content was determined via GCMS analysis and total phenolic content (TPC) and total flavonoid content (TFC) were analysed using the Folin-Ciocalteu and aluminium-chloride assays. Antioxidant activities were determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging and ferric-ion reducing antioxidant power (FRAP) assays, whereas cytotoxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and calcein/ethidium viability assays. The mechanism of cytotoxicity was investigated using Annexin V/propidium iodide. Modifications in the mitochondria were investigated using MitoTracker Red CMXRos. Ten and twenty-six compounds were characterized in the young-leaf and mixed-leaves extracts, respectively. The young-leaf methanolic extract demonstrated the highest antioxidant capacity of at least four-folds greater than the mixed-leaves and ethanolic extracts. The methanolic extract also had higher TPC and TFC values compared to the ethanolic extract. Although the mixed L. elliptica leaves had lower antioxidant capacities compared to the young leaves, the mixed leaves extract has demonstrated greater cytotoxicity against the A549 cancer cell line. Further investigation revealed that the L. elliptica leaves-induced cytotoxicity on A549 cells was possibly via the non-inflammatory mitochondria-mediated apoptotic pathway. Overall, our results showed the potential of the L. elliptica leaves possessing cytotoxic activities against carcinoma cells where the compounds present can be further investigated for its therapeutic application.Keyword: Litsea elliptica, Phytochemical composition, Antioxidant, Cytotoxicity, A549 cells, Anticancer  相似文献   
8.

Background

External nutrient discharges have caused eutrophication in many estuaries and coastal seas such as the Baltic Sea. The sedimented nutrients can affect bacterial communities which, in turn, are widely believed to contribute to release of nutrients such as phosphorus from the sediment.

Methods

We investigated relationships between bacterial communities and chemical forms of phosphorus as well as elements involved in its cycling in brackish sediments using up-to-date multivariate statistical methods. Bacterial community composition was determined by terminal restriction fragment length polymorphism and cloning of the 16S rRNA gene.

Results and Conclusions

The bacterial community composition differed along gradients of nutrients, especially of different phosphorus forms, from the estuary receiving agricultural phosphorus loading to the open sea. This suggests that the chemical composition of sediment phosphorus, which has been affected by riverine phosphorus loading, influenced on bacterial communities. Chemical and spatial parameters explained 25% and 11% of the variation in bacterial communities. Deltaproteobacteria, presumptively sulphate and sulphur/iron reducing, were strongly associated to chemical parameters, also when spatial autocorrelation was taken into account. Sulphate reducers correlated positively with labile organic phosphorus and total nitrogen in the open sea sediments. Sulphur/iron reducers and sulphate reducers linked to iron reduction correlated positively with aluminium- and iron-bound phosphorus, and total iron in the estuary. The sulphate and sulphur/iron reducing bacteria can thus have an important role both in the mineralization and mobilization of nutrients from sediment.

Significance

Novelty in our study is that relationships between bacterial community composition and different phosphorus forms, instead of total phosphorus, were investigated. Total phosphorus does not necessarily bring out interactions between bacteria and phosphorus chemistry since proportions of easily usable mobile (reactive) phosphorus and immobile phosphorus forms in different sediments can vary. Our study suggested possible feedbacks between different forms of phosphorus and bacterial community composition.  相似文献   
9.
An effective antimicrobial packaging or food contact surface should be able to kill or inhibit micro-organisms that cause food-borne illnesses. Setting up such systems, by nisin adsorption on hydrophilic and hydrophobic surfaces, is still a matter of debate. For this purpose, nisin was adsorbed on two types of low-density polyethylene: the hydrophobic native film and the hydrophilic acrylic acid-treated surface. The antibacterial activity was compared for those two films and it was highly dependent on the nature of the surface and the nisin-adsorbed amount. The hydrophilic surfaces presented higher antibacterial activity and higher amount of nisin than the hydrophobic surfaces. The effectiveness of the activated surfaces was assessed against Listeria innocua and the food pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. S. aureus was more sensitive than the three other test bacteria toward both nisin-functionalized films. Simulation tests to mimic refrigerated temperature showed that the films were effective at 20 and 4 °C with no significant difference between the two temperatures after 30 min of exposure to culture media.  相似文献   
10.
N-methyl-D-aspartic acid receptor-dependent long term potentiation (LTP), a model of memory formation, requires Ca2+·calmodulin-dependent protein kinase II (αCaMKII) activity and Thr286 autophosphorylation via both global and local Ca2+ signaling, but the mechanisms of signal transduction are not understood. We tested the hypothesis that the Ca2+-binding activator protein calmodulin (CaM) is the primary decoder of Ca2+ signals, thereby determining the output, e.g. LTP. Thus, we investigated the function of CaM mutants, deficient in Ca2+ binding at sites 1 and 2 of the N-terminal lobe or sites 3 and 4 of the C-terminal CaM lobe, in the activation of αCaMKII. Occupancy of CaM Ca2+ binding sites 1, 3, and 4 is necessary and sufficient for full activation. Moreover, the N- and C-terminal CaM lobes have distinct functions. Ca2+ binding to N lobe Ca2+ binding site 1 increases the turnover rate of the enzyme 5-fold, whereas the C lobe plays a dual role; it is required for full activity, but in addition, via Ca2+ binding site 3, it stabilizes ATP binding to αCaMKII 4-fold. Thr286 autophosphorylation is also dependent on Ca2+ binding sites on both the N and the C lobes of CaM. As the CaM C lobe sites are populated by low amplitude/low frequency (global) Ca2+ signals, but occupancy of N lobe site 1 and thus activation of αCaMKII requires high amplitude/high frequency (local) Ca2+ signals, lobe-specific sensing of Ca2+-signaling patterns by CaM is proposed to explain the requirement for both global and local Ca2+ signaling in the induction of LTP via αCaMKII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号