首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Sulfated polysaccharides (SPs) from Gracilaria fisheri of Thailand, which were extracted in low-temperature (25 °C) water showed the highest content of phenolic compounds compared with those extracted at high temperature (55 °C). Crude SP antioxidant activity was evaluated by measuring the DPPH free radical scavenging effect which is directly related to the level of phenolic compounds. The sulfate content, total sugar, and SPs yield were also directly related to the extraction temperature. All extracts contained galactose as a major monosaccharide. High antioxidant activity of crude SP, positively correlated with the phenolic compound contents (R2 = 0.996) contributed by the existence of sulfate groups and phenolic compounds. In purified SP, F1 fraction exhibited strong radical scavenging ability, but it was not significantly different compared to crude SP extracted at 25 °C. This indicated that the appropriate density and distribution of sulfate groups in the SP extract showed the best antioxidant activity.  相似文献   
2.
An endocellulase-free multienzyme complex was produced by a thermophilic anaerobic bacterium, Thermoanaerobacterium thermosaccharolyticum strain NOI-1, when grown on xylan. The temperature and pH optima for growth were 60 degrees C and 6.0, respectively. The bacterial cells were found to adhere to insoluble xylan and Avicel. A scanning electron microscopy analysis showed the adhesion of xylan to the cells. An endocellulase-free multienzyme complex was isolated from the crude enzyme of strain NOI-1 by affinity purification on cellulose and Sephacryl S-300 gel filtration. The molecular mass of the multienzyme complex was estimated to be about 1,200 kDa. The multienzyme complex showed one protein on native PAGE, one xylanase on a native zymogram, 21 proteins on SDS-PAGE, and 5 xylanases on a SDS zymogram. The multienzyme complex consisted of xylanase, beta-xylosidase, alpha-L-arabinofuranosidase, beta-glucosidase, and cellobiohydrolase. The multienzyme complex was effective in hydrolyzing xylan and corn hulls. This is the first report of an endocellulase-free multienzyme complex produced by a thermophilic anaerobic bacterium, T. thermosaccharolyticum strain NOI-1.  相似文献   
3.
The objective of this work was to apply low cost materials, agricultural residues, to the purification of xylanase. The results showed that crude extracellular, cellulase-free xylanase of an alkaliphilic Bacillus sp. strain K-8 could be purified in a single step by affinity adsorption–desorption on a corn husk column using a high flow rate, under the conditions 25 mM acetate buffer, pH 4.0, 4 °C, which prevented the hydrolysis of xylan by xylanase. After adsorption, the xylanase was eluted from the enzyme–corn husk complex with 500 mM Urea. The enzyme was purified 5.3-fold to homogeneity from culture supernatant. The molecular weight of the purified enzyme was 24 kDa as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity and recovery yield after purification were 25.4 U/mg protein and 42.3%, respectively.  相似文献   
4.
Paenibacillus curdlanolyticus B-6 produces an extracellular multienzyme complex containing a major xylanase subunit, designated Xyn11A, which includes two functional domains belonging to glycosyl hydrolase family-11 (GH11) and carbohydrate binding module family-36 (CBM36) and possesses a glycine and asparagine-rich linker (linker). To clarify the roles of each functional domain, recombinant proteins XynXL and XynX (CBM36 deleted and CBM36 and linker deleted, respectively) were constructed. Their xylanase activities were similar toward soluble xylan, whereas XynXL showed decreased hydrolysis activity toward insoluble xylan while XynX had no xylanase activity. To determine the significance of the linker and its neighbor region, XynX was subjected to secondary structural alignments using circular dichroism (CD) spectroscopy and three-dimensional (3D) structural analysis. A seven amino acid (NTITIGG) neighbor linker sequence was highly conserved among GH11 xylanases of Paenibacillus species. Although XynX exhibited a typical GH11 xylanase structure, conformational gaps were observed in the β6- and β12-sheets and in CD spectra. Flipping of the Arg163 side chains in the subsite was also observed upon analysis of superimposed models. Docking analysis using xylohexaose indicated that flipping of the Arg163 side chains markedly affected substrate binding in the subsite. To identify the amino acids related to stabilizing the substrate binding site, XynX with an extended C-terminal region was designed. At least seven amino acids were necessary to recover substrate binding and xylanase activity. These results indicated that the seven amino acid neighbor Xyn11A linker plays an important role in the activity and conformational stability of the xylanase domain.  相似文献   
5.
An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, by enrichment culture using unpretreated corn stover as the sole carbon source. The strain was Gram-positive, non-endospore forming, non-motile, and formed orange colonies on solid medium. Strain A7 was identified as Herbivorax saccincola by DNA-DNA hybridization, and phylogenetic analysis based on 16S rRNA gene sequences showed that it was closely related to H. saccincola GGR1 (= DSM 101079T). H. saccincola A7 (= JCM 31827 = DSM 104321) had quite similar phenotypic characteristics to those of strain GGR1. However, the optimum growth of A7 was at alkaline pH (9.0) and 55 °C, compared to pH 7.0 at 60 °C for GGR1, and the fatty acid profile of A7 contained 1.7-times more C17:0 iso than GGR1. The draft genome sequence revealed that H. saccincola A7 possessed a cellulosome-like extracellular macromolecular complex, which has also been found for Clostridium thermocellum and C. clariflavum. H. saccincola A7 contained more glycoside hydrolases (GHs) belonging to GH families-11 and -2, and more diversity of xylanolytic enzymes, than C. thermocellum and C. clariflavum. H. saccincola A7 could grow on xylan because it encoded essential genes for xylose metabolism, such as a xylose transporter, xylose isomerase, xylulokinase, and ribulose-phosphate 3-epimerase, which are absent from C. thermocellum. These results indicated that H. saccincola A7 has great potential as a microorganism that can effectively degrade lignocellulosic biomass.  相似文献   
6.
The anaerobic thermophilic bacterium, Clostridium thermocellum, is a potent cellulolytic microorganism that produces large extracellular multienzyme complexes called cellulosomes. To isolate C. thermocellum organisms that possess effective cellulose-degrading ability, new thermophilic cellulolytic strains were screened from more than 800 samples obtained mainly from agriculture residues in Thailand using microcrystalline cellulose as a carbon source. A new strain, C. thermocellum S14, having high cellulose-degrading ability was isolated from bagasse paper sludge. Cellulosomes prepared from S14 demonstrated faster degradation of microcrystalline cellulose, and 3.4- and 5.6-fold greater Avicelase activity than those from C. thermocellum ATCC27405 and JW20 (ATCC31449), respectively. Scanning electron microscopic analysis showed that S14 had unique cell surface features with few protuberances in contrast to the type strains. In addition, the cellulosome of S14 was resistant to inhibition by cellobiose that is a major end product of cellulose hydrolysis. Saccharification tests conducted using rice straw soaked with sodium hydroxide indicated the cellulosome of S14 released approximately 1.5-fold more total sugars compared to that of ATCC27405. This newly isolated S14 strain has the potential as an enzyme resource for effective lignocellulose degradation.  相似文献   
7.
8.
Methods facilitating research in malaria are of pivotal relevance. Flow cytometry offers the possibility of rapid enumeration of parasitemia. It relies on staining the parasite DNA to distinguish between infected and non-infected red blood cell (RBC) populations. Unfortunately, in rodents abundant reticulocyte RNA interferes with the application of the method. This results in time-consuming sample preparation protocols that offer no clear advantage over microscopic counting. We re-evaluated the use of the DNA/RNA discriminating vital fluorochrome acridine orange (AO) for rapid flow cytometric enumeration of parasitemia in rodents. Whole blood from rodents infected with Plasmodium berghei and Plasmodium yoelii was stained with AO and analyzed by flow cytometer. A newly developed two-channel (FL1/FL3) detection method was compared with conventional one-channel (FL1) detection and microscopic counting. The new AO two-channel detection method clearly discriminated between infected and non-infected RBC populations. It showed to be linear above parasitemias of 0.3%. Sample processing time amounted to approximately 5 min. It is shown that AO can be used for rapid, precise, and accurate enumeration of parasitemia in rodents. Due to its ease of handling the method might find widespread application in malaria research.  相似文献   
9.

Background

Cellulases continue to be one of the major costs associated with the lignocellulose hydrolysis process. Clostridium thermocellum is an anaerobic, thermophilic, cellulolytic bacterium that produces cellulosomes capable of efficiently degrading plant cell walls. The end-product cellobiose, however, inhibits degradation. To maximize the cellulolytic ability of C. thermocellum, it is important to eliminate this end-product inhibition.

Results

This work describes a system for biological saccharification that leads to glucose production following hydrolysis of lignocellulosic biomass. C. thermocellum cultures supplemented with thermostable beta-glucosidases make up this system. This approach does not require any supplementation with cellulases and hemicellulases. When C. thermocellum strain S14 was cultured with a Thermoanaerobacter brockii beta-glucosidase (CglT with activity 30 U/g cellulose) in medium containing 100 g/L cellulose (617 mM initial glucose equivalents), we observed not only high degradation of cellulose, but also accumulation of 426 mM glucose in the culture broth. In contrast, cultures without CglT, or with less thermostable beta-glucosidases, did not efficiently hydrolyze cellulose and accumulated high levels of glucose. Glucose production required a cellulose load of over 10 g/L. When alkali-pretreated rice straw containing 100 g/L glucan was used as the lignocellulosic biomass, approximately 72% of the glucan was saccharified, and glucose accumulated to 446 mM in the culture broth. The hydrolysate slurry containing glucose was directly fermented to 694 mM ethanol by addition of Saccharomyces cerevisiae, giving an 85% theoretical yield without any inhibition.

Conclusions

Our process is the first instance of biological saccharification with exclusive production and accumulation of glucose from lignocellulosic biomass. The key to its success was the use of C. thermocellum supplemented with a thermostable beta-glucosidase and cultured under a high cellulose load. We named this approach biological simultaneous enzyme production and saccharification (BSES). BSES may resolve a significant barrier to economical production by providing a platform for production of fermentable sugars with reduced enzyme amounts.
  相似文献   
10.
Dendritic cells (DCs) initiate innate and adaptive immune responses including those against malaria. Although several studies have shown that DC function is normal during malaria, other studies have shown compromised function. To establish why these studies had different findings, we examined DCs from mice infected with two lethal species of parasite, Plasmodium berghei or P. vinckei, and compared them to DCs from nonlethal P. yoelii 17XNL or P. chabaudi infections. These studies found that DCs from only the lethal infections became uniformly mature 7 days after infection and were functionally impaired as they were unable to endocytose latex particles, secrete IL-12, or present OVA to transgenic OTII T cells. These changes coincided with a peak in levels of systemic TNF-alpha. Because TNF-alpha is known to mature DCs, we used TNF-KO mice to determine the role of this cytokine in the loss of DC function. In the TNF-KO mice, phenotype, Ag presentation, and IL-12 secretion by DCs were restored to normal following both lethal infections. This study shows that the systemic production of TNF-alpha contributes to poor DC function during lethal infections. These studies may explain, at least in part, immunosuppression that is associated with malaria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号