首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   6篇
  2023年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Carbonate and total organic carbon stable isotope analyses of the Upper Permian and Lower Triassic succession in the Masore section in western Slovenia indicate a high storage of organic matter during the Upper Permian, as well as the well known worldwide light carbon isotope event across the P/Tr boundary. The perturbations in the global carbon cycle observed in the investigated section span an approximately 50 cm thick interval (from –11 cm below to +41 cm above the lithostratigraphically determined P/Tr boundary), and coincide more or less with changes in lithology, as well as with an abrupt disappearance of Upper Permian marine fauna. In this section changes in the sedimentary environment are most probably related to Upper Permian—Lower Triassic sea level changes. The carbonate and organic carbon negative peak anomaly could be explained by accelerated changes in the end Permian carbon cycle, due to some co-occurring events, such as pronounced erosion and oxidation of organic carbon, a possible release of methane from stored hydrates, and volcanic activity, as well as by a sudden reduction in primary productivity triggered by not yet completely satisfactorily explained mechanisms.  相似文献   
2.
Prolonged immobilization results in several physiological problems. It has been demonstrated that standing exercises can ameliorate many of these problems. Standing exercises can be performed efficiently with the help of functional electrical stimulation (FES). A novel robotic mechanism which aids the unsupported standing of paraplegics, providing balancing exercise has been developed. The balancing strategy is based on voluntary activity of the paraplegic's upper body and artificially controlled stiffness in the ankles.  相似文献   
3.
The purpose of this study was to characterize biomechanically three different toe-walking gait patterns, artificially induced in six neurologically intact subjects and to compare them to selected cases of pathological toe-walking. The subjects, equipped with lightweight mechanical exoskeleton with elastic ropes attached to the left leg's heel on one end and on shank and thigh on the other end in a similar anatomical locations where soleus and gastrocnemius muscles attach to skeleton, walked at speed of approximately 1m/s along the walkway under four experimental conditions: normal walking (NW), soleus contracture emulation (SOL), gastrocnemius contracture emulation (GAS) and emulation of both soleus and gastrocnemius contractures (SOLGAS). Reflective markers and force platform data were collected and ankle, knee and hip joint angles, moments and powers were calculated using inverse dynamic model for both legs. Characteristic peaks of averaged kinematic and kinetic patterns were compared among all four experimental conditions in one-way ANOVA. In the left leg SOL contracture mainly influenced the ankle angle trajectory, while GAS and SOLGAS contractures influenced the ankle and knee angle trajectories. GAS and SOLGAS contractures significantly increased ankle moment during midstance as compared to SOL contracture and NW. All three toe-walking experimental conditions exhibited significant power absorption in the ankle during loading response, which was absent in the NW condition, while during preswing significant decrease in power absorption as compared to NW was seen. In the knee joint SOL contracture diminished, GAS contracture increased while SOLGAS contracture approximately halved knee extensor moment during midstance as compared to NW. All three toe-walking experimental conditions decreased hip range of motion, hip flexor moment and power requirements during stance phase. Main difference in the right leg kinematic and kinetic patterns was seen in the knee moment trajectory, where significant increase in the knee extensor moment took place in terminal stance for GAS and SOLGAS experimental conditions as compared to SOL and NW. The kinetic trajectories under SOL and GAS experimental conditions were qualitatively compared to two selected clinical cases showing considerable similarity. This implies that distinct differences in kinetics between SOL, GAS and SOLGAS experimental conditions, as described in this paper, may be clinically relevant in determining the relative contribution of soleus and gastrocnemius muscles contractures to toe-walking in particular pathological gait.  相似文献   
4.
Placement of a cell into an external electric field causes a local charge redistribution inside and outside of the cell in the vicinity of the cell membrane, resulting in a voltage across the membrane. This voltage, termed the induced membrane voltage (also induced transmembrane voltage, or induced transmembrane potential difference) and denoted by ΔΦ, exists only as long as the external field is present. If the resting voltage is present on the membrane, the induced voltage superimposes (adds) onto it. By using one of the potentiometric fluorescent dyes, such as di-8-ANEPPS, it is possible to observe the variations of ΔΦ on the cell membrane and to measure its value noninvasively. di-8-ANEPPS becomes strongly fluorescent when bound to the lipid bilayer of the cell membrane, with the change of the fluorescence intensity proportional to the change of ΔΦ. This video shows the protocol for measuring ΔΦ using di-8-ANEPPS and also demonstrates the influence of cell shape on the amplitude and spatial distribution of ΔΦ.  相似文献   
5.
Two amphipods, the hypogean Niphargus stygius and epigean Gammarus fossarum, were analyzed for fatty acid (FA) composition, electron transport system (ETS) activity and respiration (R) during a laboratory fasting experiment. In agreement with ETS and R measurements (and the ETS/R ratio), the hypogean N. stygius utilized FA more slowly than the epigean G. fossarum. Inter-specific differences in the utilization of certain FA during fasting were also revealed. While N. stygius tended to preserve all of its FA during the experimental fasting period, G. fossarum showed a tendency to utilize MUFA (monounsaturated FA) and SAFA (saturated FA) and preferentially retain PUFA (polyunsaturated FA). The significant correlations between ETS activity and composition of specific FA during fasting can be linked to R. During the fasting, both ETS activity and respiration rate of G. fossarum decreased, however, ETS/R ratio increased. In contrast, N. stygius did not show significant changes in these parameters. This is the first report, which connects ETS activity with changes in concentrations of specific FA during fasting. Such evolutionary adaptations of hypogean species enables them to better survive chronically low and/or discontinuous food supplies compared to epigean species, which live in environments where food shortages are much less frequent.  相似文献   
6.
Treatment of cutaneous and subcutaneous tumors with electrochemotherapy has become a regular clinical method, while treatment of deep-seated tumors is still at an early stage of development. We present a method for preparing a dedicated patient-specific, computer-optimized treatment plan for electrochemotherapy of deep-seated tumors based on medical images. The treatment plan takes into account the patient’s anatomy, tissue conductivity changes during electroporation and the constraints of the pulse generator. Analysis of the robustness of a treatment plan made with this method shows that the effectiveness of the treatment is not affected significantly by small single errors in electrode positioning. However, when many errors occur simultaneously, the resulting drop in effectiveness is larger, which means that it is necessary to be as accurate as possible in electrode positioning. The largest effect on treatment effectiveness stems from uncertainties in dielectric properties and electroporation thresholds of treated tumors and surrounding tissues, which emphasizes the need for more accurate measurements and more research. The presented methods for treatment planning and robustness analysis allow quantification of the treatment reproducibility and enable the setting of suitable safety margins to improve the likelihood of successful treatment of deep-seated tumors by electrochemotherapy.  相似文献   
7.
When studying pathological gait it is important to correctly identify primary gait anomalies originating from damage to the central nervous and musculoskeletal system and separate them from compensatory changes of gait pattern, which is often challenging due to the lack of knowledge related to biomechanics of pathological gait. A mechanical system consisting of specially designed trousers, special shoe arrangement, and elastic ropes attached to selected locations on the trousers and shoes is proposed to allow emulation of muscle contractures of soleus (SOL) and gastrocnemius (GAS) muscles and both SOL-GAS. The main objective of this study was to evaluate and compare gait variability as recorded in normal gait and when being constrained with the proposed system. Six neurologically and orthopedically intact volunteers walked along a 7-m walkway while gait kinematics and kinetics were recorded using VICON motion analysis system and two AMTI forceplates. Statistical analysis of coefficient of variation of kinematics and kinetics as recorded in normal walking and during the most constrained SOL-GAS condition showed comparable gait variability. Inspection of resulting group averaged gait patterns revealed considerable resemblance to a selected clinical example of spastic diplegia, indicating that the proposed mechanical system potentially represents a novel method for studying emulated pathological gait arising from artificially induced muscle contractures in neurologically intact individuals.  相似文献   
8.
The transport of propidium iodide into electropermeabilized Chinese hamster ovary cells was monitored with a photomultiplier tube during and after the electric pulse. The influence of pulse amplitude and duration on the transport kinetics was investigated with time resolutions from 200 ns to 4 ms in intervals from 400 μs to 8 s. The transport became detectable as early as 60 μs after the start of the pulse, continued for tens of seconds after the pulse, and was faster and larger for higher pulse amplitudes and/or longer pulse durations. With fixed pulse parameters, transport into confluent monolayers of cells was slower than transport into suspended cells. Different time courses of fluorescence increase were observed during and at various times after the pulse, reflecting different transport mechanisms and ongoing membrane resealing. The data were compared to theoretical predictions of the Nernst-Planck equation. After a delay of 60 μs, the time course of fluorescence during the pulse was approximately linear, supporting a mainly electrophoretic solution of the Nernst-Planck equation. The time course after the pulse agreed with diffusional solution of the Nernst-Planck equation if the membrane resealing was assumed to consist of three distinct components, with time constants in the range of tens of microseconds, hundreds of microseconds, and tens of seconds, respectively.  相似文献   
9.
Sequence extension of the scaffoldin gene cluster from Ruminococcus flavefaciens revealed a new gene (scaE) that encodes a protein with an N-terminal cohesin domain and a C terminus with a typical gram-positive anchoring signal for sortase-mediated attachment to the bacterial cell wall. The recombinant cohesin of ScaE was recovered after expression in Escherichia coli and was shown to bind to the C-terminal domain of the cellulosomal structural protein ScaB, as well as to three unknown polypeptides derived from native cellulose-bound Ruminococcus flavefaciens protein extracts. The ScaB C terminus includes a cryptic dockerin domain that is unusual in its sequence, and considerably larger than conventional dockerins. The ScaB dockerin binds to ScaE, suggesting that this interaction occurs through a novel cohesin-dockerin pairing. The novel ScaB dockerin was expressed as a xylanase fusion protein, which was shown to bind tenaciously and selectively to a recombinant form of the ScaE cohesin. Thus, ScaE appears to play a role in anchoring the cellulosomal complex to the bacterial cell envelope via its interaction with ScaB. This sortase-mediated mechanism for covalent cell-wall anchoring of the cellulosome in R. flavefaciens differs from those reported thus far for any other cellulosome system.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号