首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1986年   2篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
Ataxia with vitamin E deficiency (AVED) is an autosomal recessive disease characterized clinically by neurological symptoms with often striking resemblance to those of Friedreich ataxia. This disorder has been reported previously as familial isolated vitamin E deficiency. We have mapped recently the AVED locus to a 5-cM confidence interval on chromosome 8q by homozygosity mapping in six Mediterranean families. We have now analyzed six new and two previously described families and demonstrate genetic homogeneity despite important clinical variability and wide geographic origins. Analysis of nine new tightly linked microsatellite markers, including four characterized in this study, revealed a predominant but not unique mutation in northern African populations, where this condition is more frequent. Haplotype analysis but also classical recombinations allowed us to refine the AVED position to a 1-cM interval. A YAC contig over this interval was constructed from marker STSs and YAC fingerprint data, in order to facilitate the search of the AVED gene.  相似文献   
2.
We have characterized a xanthophyll binding site, called V1, in the major light harvesting complex of photosystem II, distinct from the three tightly binding sites previously described as L1, L2, and N1. Xanthophyll binding to the V1 site can be preserved upon solubilization of the chloroplast membranes with the mild detergent dodecyl-alpha-d-maltoside, while an IEF purification step completely removes the ligand. Surprisingly, spectroscopic analysis showed that when bound in this site, xanthophylls are unable to transfer absorbed light energy to chlorophyll a. Pigments bound to sites L1, L2, and N1, in contrast, readily transfer energy to chlorophyll a. This result suggests that this binding site is not directly involved in light harvesting function. When violaxanthin, which in normal conditions is the main carotenoid in this site, is depleted by the de-epoxidation in strong light, the site binds other xanthophyll species, including newly synthesized zeaxanthin, which does not induce detectable changes in the properties of the complex. It is proposed that this xanthophyll binding site represents a reservoir of readily available violaxanthin for the operation of the xanthophyll cycle in excess light conditions.  相似文献   
3.
Viral safety remains a challenge when processing a plasma‐derived product. A variety of pathogens might be present in the starting material, which requires a downstream process capable of broad viral reduction. In this article, we used a wide panel of viruses to assess viral removal/inactivation of our downstream process for Snake Antivenom Immunoglobulin (SAI). First, we screened and excluded equine plasma that cross‐reacted with any model virus, a procedure not published before for antivenoms. In addition, we evaluated for the first time the virucidal capacity of phenol applied to SAI products. Among the steps analyzed in the process, phenol addition was the most effective one, followed by heat, caprylic acid, and pepsin. All viruses were fully inactivated only by phenol treatment; heat, the second most effective step, did not inactivate the rotavirus and the adenovirus used. We therefore present a SAI downstream method that is cost‐effective and eliminates viruses to the extent required by WHO for a safe product. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:972–979, 2013  相似文献   
4.
Intracellular pH and Ca(2+) were measured with BCECF- and Calcium Green-dextran during maturation and fertilization of oocytes of the limpet Lottia gigantea. Maturation of oocytes from prophase to metaphase I of meiosis was induced in seawater adjusted to pH 9 with NH(4)OH. Intracellular pH rose during maturation induction, and maturation was also induced by microinjecting pH 8, but not pH 7, HEPES buffer. Intracellular Ca(2+) rose during NH(4)OH-induced maturation, but maturation was not inhibited when the increase was blocked by microinjection of BAPTA. When the metaphase I oocytes were fertilized(), there was an abrupt increase in intracellular Ca(2+), and activation (polar body formation) failed to occur in BAPTA-injected oocytes. Intracellular pH did not rise during fertilization. These observations show that maturation from prophase to metaphase I of meiosis is pH-dependent and activation of the metaphase I oocytes is Ca(2+)-dependent. A Ca(2+) action potential was present in both immature and mature oocytes but was more prominent in mature oocytes whose input resistance was higher. Fertilization produced a long-lasting (17-20 min) Na(+)-dependent fertilization potential with superimposed oscillations resembling Ca(2+) action potentials.  相似文献   
5.
Three ejaculates were collected from each of five dogs. After initial evaluation, the sperm-rich fractions were diluted to 100 x 10(6) spermatozoa x mL(-1) in two steps with an egg yolk-TRIS extender containing a final concentration of 5% glycerol and 0.5% Equex STM paste. Half of the 0.5 mL straws obtained from each ejaculate were frozen on nitrogen vapours (4 cm above the liquid surface) ("rapid freezing"), while the other half was frozen in a biological freezer at a rate of 0.5 degrees C x min(-1) between 5 degrees C and -10 degrees C and of 8 degrees C x min(-1) between -10 degrees C and -60 degrees C, followed by immersion in liquid nitrogen ("slow freezing"). After an average storage of 30 days, the straws were thawed in a water-bath at 37 degrees C for 1 min. Progressive motility was subjectively estimated hourly for 8 h on semen incubated at 38 degrees C. Immediately after thawing and after 2 h of incubation, motility parameters were also measured by a motility analyser. Sperm membrane function and chromatin stability were assessed immediately post-thaw, using the hypo-osmotic swelling test and acridine orange staining, respectively. Slow freezing significantly improved total post-thaw motility, which showed a slower decline over time, although spermatozoal average path and straight line velocity were lower compared to the fast rate. Also the number of intact membrane spermatozoa was significantly higher in slow-frozen samples while the proportion of spermatozoa with single-stranded DNA was minimal after both freezing procedures.  相似文献   
6.
The electric-field induced absorption changes (Stark effect) of reconstituted light-harvesting complex II (LHCII) in different oligomerisation states-monomers and trimers-with different xanthophyll content have been probed at 77 K. The Stark spectra of the reconstituted control samples, containing the xanthophylls lutein and neoxanthin, are very similar to previously reported spectra of native LHCII. Reconstituted LHCII, containing lutein but no neoxanthin, shows a similar electrooptical response in the Chl a region, but the Stark signal of Chl b around 650 nm amounts to at most approximately 25% of that of the control samples. We conclude that neoxanthin strongly modifies the electronic states of the nearby Chl b molecules causing a large electrooptical response at 650 nm stemming from one or more Chls b in the control samples. Ambiguities about the assignment of several bands in the Soret region [Biochim. Biophys. Acta 1605 (2003) 83] are resolved and the striking difference in electric field response between the two lutein molecules is confirmed. The Stark effect in the carotenoid spectral region in both control and neoxanthin-deficient samples is almost identical, showing that the neoxanthin Stark signal is small and much less intense than the lutein Stark signal.  相似文献   
7.
State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I.  相似文献   
8.
Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids   总被引:5,自引:0,他引:5  
Plant thylakoids have a highly conserved xanthophyll composition, consisting of β-carotene, lutein, neoxanthin and a pool of violaxanthin that can be converted to antheraxanthin and zeaxanthin in excess light conditions. Recent work has shown that xanthophylls undergo dynamic changes, not only in their composition but also in their distribution among Lhc proteins. Xanthophylls are released from specific binding site in the major trimeric LHCII complex of photosystem II and are subsequently bound to different sites into monomeric Lhcb proteins and dimeric Lhca proteins. In this work we review available evidence from in vivo and in vitro studies on the structural determinants that control xanthophyll exchange in Lhc proteins. We conclude that the xanthophyll exchange rate is determined by the structure of individual Lhc gene products and it is specifically controlled by the lumenal pH independently from the activation state of the violaxanthin de-epoxidase enzyme. The xanthophyll exchange induces important modifications in the organization of the antenna system of Photosystem II and, possibly of Photosystem I. Major changes consist into a modulation of the light harvesting efficiency and an increase of the protection from lipid peroxidation. The xanthophyll cycle thus appears to be a signal transduction system for co-ordinated regulation of the photoprotection mechanisms under persistent stress from excess light.  相似文献   
9.
Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations ranging from a newly identified particle composed by a monomeric core and antenna proteins to the largest C2S2M2 supercomplex were isolated. Characterization by biochemical methods and single particle electron microscopy allowed to relate for the first time the supramolecular organization to the protein content. A projection map of C2S2M2 at 12 Å resolution was obtained, which allowed determining the location and the orientation of the antenna proteins. Comparison of the supercomplexes obtained from WT and Lhcb‐deficient plants reveals the importance of the individual subunits for the supramolecular organization. The functional implications of these findings are discussed and allow redefining previous suggestions on PSII energy transfer, assembly, photoinhibition, state transition and non‐photochemical quenching.  相似文献   
10.
When acetic acid-urea polyacrylamide gels with or without Triton X-100 were immersed in 0.1 M Na picrate, pH 7, to which 1/4 vol Coomassie blue staining solution (0.2% in 45% methanol, 10% acetic acid, 45% water) was added, proteins stained rapidly (within a few minutes in gels without Triton and within an hour in gels with Triton) with little or no background staining. Thus protein bands could be observed in a single step with no destaining. The picrate-Coomassie blue method fixed and stained a small peptide (bradykinin, nine amino acids) that was not observed in gels stained with fast green, silver, or Coomassie blue following fixation in 50% trichloroacetic acid. The picrate-Coomassie blue method gave high-contrast bands suitable for densitometry. Gels containing sodium dodecyl sulfate were also stained by the picrate-Coomassie blue method if they were first washed briefly (1 h) in 45% methanol, 10% acetic acid, 45% water, presumably to remove the detergent. These gels also stained rapidly with almost no background.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号