首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1995年   2篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
The effect of N supply on the quality of Calliandra calothyrsus and Gliricidia sepium prunings was studied in a glasshouse over a 7-month growing period. Increasing the concentration of N supplied from 0.625 to 10.0 mM NO3-N resulted in increased N concentration but decreased polyphenol concentration, protein-binding capacity and C:N ratio of prunings from both species. Lignin concentration was not consistently altered by the N treatment. Mineralization of N from the prunings was measured over a 14-week period under controlled leaching and non-leaching conditions. The results indicated a strong interaction between legume species and concentration of N supply in their influence on N mineralization of the prunings applied to the soil. Differences in the %N mineralized were dictated by the quality of the prunings. The (lignin + polyphenol):N ratio was the pruning quality factor which could be used most consistently and accurately to predict N mineralization of the legume prunings incubated under leaching conditions, and the relationship was best described by a linear regression. Under non-leaching conditions, however, the protein-binding capacity appeared to be the most important parameter in determining the patterns of N release from the prunings studied. The relationship between the N mineralization rate constant and the protein-binding capacity was best described by a negative exponential function, y=0.078 exp(–0.0083x). The present study also indicated that the release of N from legume prunings containing a relatively high amount of polyphenol could be enhanced by governing the N availability conditions under which the plant is grown, for example whether or not it is actively fixing nitrogen. Estimates of pruning N mineralization after 14 weeks with the difference method averaged 6% (leaching conditions) and 22% (nonleaching conditions) more than with the 15N method for all legume prunings studied. The recovery of pruning by maize (4–38%) was well correlated with the % pruning N mineralized suggesting that incubation data closely reflect the pruning N value for a given catch crop under non-leaching conditions.  相似文献   
2.
Thirteen acylated flavonoid glycosides, 1 – 13 , including eleven new congeners, 3 – 13 , were isolated from the aerial parts of Pritzelago alpina (Brassicaceae) by a combination of column chromatography on Sephadex LH‐20, and preparative and semi‐preparative HPLC. The structures were established by extensive NMR and MS experiments in combination with acid hydrolysis and sugar analysis by GC/MS. The new compounds were shown to be kaempferol and quercetin glycosides acylated for most of them by a branched short chain fatty acid or a hydroxycinnamic acid residue on the sugar portion. As shown by a HPLC‐DAD analysis of a MeOH extract, these compounds are the main phenolic constituents in the aerial parts of the plant.  相似文献   
3.
This study aimed at tracing and quantifying organic carbon and total nitrogen fluxes related to suspended material in irrigation water in the uplands of northwest Vietnam. In the study area, a reservoir acts as a sink for sediments from the surrounding mountains, feeding irrigation channels to irrigate lowland paddy systems. A flow separation identified the flow components of overland flow, water release from the reservoir to the irrigation channel, direct precipitation into the channel, irrigation discharge to paddy fields and discharge leaving the sub-watershed. A mixed effects model was used to assess the C and N loads of each flow component. Irrigation water had an average baseline concentration of 29?±?4.4?mg?l?1 inorganic C, 4.7?±?1.2?mg?l?1 organic C and 3.9?±?1.6?mg?l?1 total N. Once soils were rewetted and overland flow was induced, organic C and total N concentrations changed rapidly due to increasing sediment loads in the irrigation water. Summarizing all monitored events, overland flow was estimated to convey about 63?kg organic C ha?1 and 8.5?kg?N?ha?1 from surrounding upland fields to the irrigation channel. The drainage of various non-point sources towards the irrigation channel was supported by the variation of the estimated organic C/total N ratios of the overland flow which fluctuated between 2 and 7. Nevertheless, the majority of the nutrient loads (up to 93–99%) were derived from the reservoir, which served as a sediment-buffer trap. Due to the overall high nutrient and sediment content of the reservoir water used for irrigation, a significant proportion of nutrients was continuously reallocated to the paddy fields in the lowland throughout the rice cropping season. The cumulative amount of organic C and total N load entering paddies with the irrigation water between May and September was estimated at 0.8 and 0.7?Mg?ha?1, respectively. Therefore deposition of C and N through irrigation is an important contributor in maintaining soil fertility, and a process to be taken into account in the soil fertility management in these paddy rice systems.  相似文献   
4.
It is generally thought that grain legume residues make a substantial net N contribution to soil fertility in crop rotation systems. However, most studies focus on effects of residues on crops immediately sown after the legume crop while in fact in many tropical countries with a prolonged dry season there is a large gap before planting the next crop with potential for nutrient losses. Thus the objectives of this study were* to improve the efficiency of groundnut (Arachis hypogaea L.) stover-N (100 kg N ha –1) recycling by evaluating the effect of dry season stover management, i.e. surface application and immediate incorporation after the legume crop or storage of residues until next cropping in the rainy season. N dynamics (litterbags, mineral N, microbial biomass N, N 2O emissions) were monitored and 15N labelled residues were applied to assess the fate of residue N in the plant–soil (0–100 cm) system during two subsequent maize crops. Recycling groundnut stover improved yield of the subsequent maize (Zea mays L.) crop compared to treatment without stover. A higher N recycling efficiency was observed when residues were incorporated (i.e. 55% total 15N recovery after second maize crop) than when surface applied (43% recovery) at the beginning of the dry season. This was despite the faster nitrogen release of incorporated residues, which led to more mineral N movement to lower soil layers. It appears that a proportion of groundnut stover N released during the dry season was effectively captured by the natural weed population (54–70 kg N ha –1) and subsequently recycled particularly in the incorporation treatment. Despite the presence of weeds major leaching losses occurred during the onset of the rainy season while N 2O emissions were relatively small. There was a good correlation between soil microbial biomass N and first crop maize yield. Incorporation of groundnut residues led to small increases in economic yield, i.e., 3120 versus 3528 kg ha –1 over two cropping cycles in the surface versus incorporation treatments respectively, with corresponding residue 15N uptakes of 4 and 8%, while 15N recovery in water stable aggregates (9–15%) was not significantly different. In contrast, when stover was removed and applied before the first crop, yield benefits were highest with cumulative maize yields of 4350 kg ha –1 and residue utilization of 12%. However, N recycling efficiency was not higher than in the early incorporation treatment due to an asynchrony of N release and maize N demand during the first crop.  相似文献   
5.
The effect of vacuum packaging on the shelf-life and handling of Pesta granules and seed treatment made with chlamydospores of Fusarium oxysporum strains Foxy2, PSM197 or their mixture was studied at 4°C and 22±3°C over 1 year. In addition, the effects of co-incorporated amendments [urea in Pesta or co-delivered fungicides (Ridomil Gold®, Apron XL®) on coated sorghum seeds], and coating material (Arabic gum ‘AG’, SUET Binder ‘SB’) on the viability of Striga-mycoherbicides were evaluated. Storage under vacuum packaging did not enhance shelf-life of the formulated Striga-mycoherbicidal products after 12 months of storage regardless of the treatment used. The co-incorporated urea into Pesta granules significantly reduced the viability of mycoherbicides, but less so at 4°C (58% strain-stability after 12 months). No significant differences between the coating materials in maintaining the viability of mycoherbicides were observed. The shelf-life of isolates on coated seeds significantly decreased when adding Ridomil Gold®. However, at 4°C, the fungicide Apron XL® allowed better survival of Foxy2 and PSM197 by maintaining their averaged half-lives (t 0.5) by an additional 6 months compared to Ridomil Gold®. In general, Striga-mycoherbicidal product combinations exhibited a significantly higher shelf-life when stored at 4°C than at 22±3°C. The absence of a positive effect of vacuum packaging on shelf-life of Striga-mycoherbicidal products reflects the tolerance of the formulated fungal propagules (chlamydospores) to withstand an oxygen enriched environment and allows their handling and distribution through ordinary packaging systems in Africa. The high compatibility between Striga-mycoherbicides and the co-delivered fungicide Apron XL®, and the fungal storage stability allows simultaneous control of Striga and fungal cereal diseases within an integrated pest management (IPM).  相似文献   
6.
Cadisch  G.  Handayanto  E.  Malama  C.  Seyni  F.  Giller  K.E. 《Plant and Soil》1998,205(2):125-134
Nitrogen recovery from 15N-labelled prunings of Gliricidia sepium, Peltophorum dasyrrachis, Calliandra calothyrsus and Leucaena leucocephala, each of two different chemical qualities, was followed over three cropping cycles in a growth room. Half of the pots of each treatment received a further addition of unlabelled pruning material, from the same species as that previously applied, before the second and third crop cycle. The cumulative maize total N accumulation revealed the largest benefit from N rich, low lignin and polyphenols Gliricidia prunings followed by Leucaena, Calliandra and Peltophorum. Cumulative N recovery measured using 15N over the three crop cycles ranged from 9% from Calliandra prunings to 44% from Gliricidia prunings. The vast majority of this N was recovered during the first crop cycle which agreed well with estimates using the N difference method. Recoveries in the second and third crops ranged from 0.4–5% (15N method) and 6–14% (N difference method) of the N initially applied. The protein binding capacity of polyphenols was the best predictor of N recovery at both initial and later crop cycles. Treatments which led to a large N recovery initially, continued to provide greater N benefits in subsequent cycles although with increasing harvest time this trend decreased. Thus, there was no compensation in initial N release from low quality prunings at later harvests and the agronomic implications of this are discussed. Addition of unlabelled Gliricidia prunings before the second and third cycle led to a positive apparent priming effect on previously applied 15N labelled prunings. By contrast, repeated additions of Peltophorum residues, rich in lignin and active polyphenols, resulted in a reduced recovery of initially applied pruning-15N. However, the maximum positive or negative effects on recovery of pruning N amounted to less than 2% recovery of the initial amount of N added over 14 weeks. Thus the scope for regulation of N release from tree prunings during these later stages of decomposition appears to be limited.  相似文献   
7.
Two investigations into the translocation of temperate deciduous woodland soil were carried out in Kent, S. E. England, to study the effects on C and N mineralisation. In the field experiment, two translocation methods were compared: (i) placement, moving soil as an intact surface profile and (ii) loose-tipping in which the surface profile was mixed. These were implemented in winter both in situ (under the woodland canopy) and ex situ (soil moved to a receptor site outside woodland). In a second experiment, intact soil cores from the woodland site were subjected to different levels of disturbance in a polythene tunnel environment. Measurements of soil CO2 evolution and N mineralisation in both experiments showed a clear seasonal pattern, strongly influenced by temperature. Over a 7-month period, cumulative net N mineralisation in the field was greater in the woodland controls and placement treatments than loose-tipping treatments. Soil CO2 emissions were also greater in woodland control plots in the winter compared with ex situ treatments. Similarly, in the polythene tunnel environment, CO2 emissions were highest in the undisturbed soil cores, while N mineralisation varied with soil depth but, across the whole profile, was also greater in the controls. We conclude that the mixing of organic rich topsoil with mineral subsoil in clayey soil may have protected the organic residues on the clay-silt surfaces, resulting in overall lower mineralisation rates in the disturbed soil. These results indicate that N mineralisation does not necessarily increase when soil translocation operations are carried out on clayey soils in winter. Placement methods appeared the most likely to conserve soil mineralisation processes close to those in undisturbed woodland soil, but depend greatly on the success of maintaining the soil profile intact. It appears that, on clayey soils, the development of vegetation at the receptor site is more likely to be determined by alterations in the light, soil temperature and moisture regime that will occur in open conditions after woodland translocation than from increased soil N supply.  相似文献   
8.
Access and excess problems in plant nutrition   总被引:1,自引:1,他引:0  
As plant nutrition issues are redefined by society, new applications emerge for a basic understanding of nutrient use efficiency in soil-plant processes to avoid excess on rich soils as commonly found in the temperate zone and make the best of it under access-limited conditions common in the tropics. The main challenge of plant nutrition may be to increase the width of the domain between the access and excess frontiers, rather than to define a single `economic optimum' point. Two approaches are discussed to widen this domain: the technical paradigm of precision farming and the ecological analogue approach based on filter functions and complementarity of components in mixed plant systems. Current understanding of plant nutrition, largely focused on monocultural situations, needs to be augmented by the interactions that occur in more complex systems, including agroforestry and intercropping as these may form part of the answer in both the excess and shortage type of situation. Simulations with the WaNuLCAS model to explore the concepts of a 'safety-net' for mobile nutrients by deep rooted plants suggested a limited but real opportunity to intercept nutrients on their way out of the system and thus increase nutrient use-efficiency at the system level. The impacts of rhizosphere modification to mobilize nutrients in mixed-species systems were shown to depend on the degree of synlocation of roots of the various plant components, as well as on the long-term replenishment of the nutrient resources accessed. In conclusion, the concepts and tools to help farmers navigate between the scylla of access and the charibdis of excess problems in plant nutrition certainly exist, but their use requires an appreciation of the site-specific interactions and various levels of internal regulation, rather than a reliance alone on genetic modification of plants aimed at transferring specific mechanisms out of context.  相似文献   
9.
Emissions of N2O were measured following combined applications of inorganic N fertiliser and crop residues to a silt loam soil in S.E. England, UK. Effects of cultivation technique and residue application on N2O emissions were examined over 2 years. N2O emissions were increased in the presence of residues and were further increased where NH4NO3 fertiliser (200 kg N ha–1) was applied. Large fluxes of N2O were measured from the zero till treatments after residue and fertiliser application, with 2.5 kg N2O-N ha–1 measured over the first 23 days after application of fertiliser in combination with rye (Secale cereale) residues under zero tillage. CO2 emissions were larger in the zero till than in the conventional till treatments. A significant tillage/residue interaction was found. Highest emissions were measured from the conventionally tilled bean (Vicia faba) (1.0 kg N2O-N ha–1 emitted over 65 days) and zero tilled rye (3.5 kg N2O-N ha–1 over 65 days) treatments. This was attributed to rapid release of N following incorporation of bean residues in the conventionally tilled treatments, and availability of readily degradable C from the rye in the presence of anaerobic conditions under the mulch in the zero tilled treatments. Measurement of 15N-N2O emission following application of 15N-labelled fertiliser to microplots indicated that surface mulching of residues in zero till treatments resulted in a greater proportion of fertiliser N being lost as N2O than with incorporation of residues. Combined applications of 15N fertiliser and bean residues resulted in higher or lower emissions, depending on cultivation technique, when compared with the sum of N2O from single applications. Such interactions have important implications for mitigation of N2O from agricultural soils.  相似文献   
10.
Emissions of N2O were measured during the growth season over a year from grass swards under ambient (360 μL L?1) and elevated (600 μL L?1) CO2 partial pressures at the Free Air Carbon dioxide Enrichment (FACE) experiment, Eschikon, Switzerland. Measurements were made following high (56 g N m?2 yr?1) and low (14 g N m?2 yr?1) rates of fertilizer application, split over 5 re‐growth periods, to Lolium perenne, Trifolium repens and mixed Lolium/Trifolium swards. Elevated pCO2 increased annual emissions of N2O from the high fertilized Lolium and mixed Lolium/Trifolium swards resulting in increases in GWP (N2O emissions) of 179 and 111 g CO2 equivalents m?2, respectively, compared with the GWP of ambient pCO2 swards, but had no significant effect on annual emissions from Trifolium monoculture swards. The greater emissions from the high fertilized elevated pCO2Lolium swards were attributed to greater below‐ground C allocation under elevated pCO2 providing the energy for denitrification in the presence of excess mineral N. An annual emission of 959 mg N2O‐N m?2 yr?1 (1.7% of fertilizer N applied) was measured from the high fertilized Lolium sward under elevated pCO2. The magnitude of emissions varied throughout the year with 84% of the total emission from the elevated pCO2Lolium swards measured during the first two re‐growths (April–June 2001). This was associated with higher rainfall and soil water contents at this time of year. Trends in emissions varied between the first two re‐growths (April–June 2001) and the third, fourth and fifth re‐growths (late June–October 2000), with available soil NO3? and rainfall explaining 70%, and soil water content explaining 72% of the variability in N2O in these periods, respectively. Caution is therefore required when extrapolating from short‐term measurements to predict long‐term responses to global climate change. Our findings are of global significance as increases in atmospheric concentrations of CO2 may, depending on sward composition and fertilizer management, increase greenhouse gas emissions of N2O, thereby exacerbating the forcing effect of elevated CO2 on global climate. Our results suggest that when applying high rates of N fertilizer to grassland systems, Trifolium repens swards, or a greater component of Trifolium in mixed swards, may minimize the negative effect of continued increasing atmospheric CO2 concentrations on global warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号