首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19557篇
  免费   1694篇
  国内免费   2975篇
  2024年   43篇
  2023年   270篇
  2022年   562篇
  2021年   1126篇
  2020年   789篇
  2019年   944篇
  2018年   837篇
  2017年   618篇
  2016年   863篇
  2015年   1253篇
  2014年   1527篇
  2013年   1540篇
  2012年   1887篇
  2011年   1701篇
  2010年   1092篇
  2009年   1023篇
  2008年   1124篇
  2007年   978篇
  2006年   899篇
  2005年   820篇
  2004年   625篇
  2003年   562篇
  2002年   442篇
  2001年   375篇
  2000年   351篇
  1999年   317篇
  1998年   197篇
  1997年   171篇
  1996年   192篇
  1995年   146篇
  1994年   167篇
  1993年   106篇
  1992年   120篇
  1991年   115篇
  1990年   81篇
  1989年   75篇
  1988年   50篇
  1987年   62篇
  1986年   45篇
  1985年   31篇
  1984年   39篇
  1983年   23篇
  1982年   19篇
  1981年   11篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
2.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
3.
4.
5.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
6.
Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.  相似文献   
7.
8.
The Rd gene is expressed in the livers and oviducts of laying hens and codes for the riboflavin-binding protein (RfBP) of egg yolk and egg white. A lambda gt11 cDNA library derived from chicken oviduct poly(A)+ RNA was screened with polyclonal rabbit antiserum to chicken RfBP. Positive clones were isolated and rescreened with a mixed oligonucleotide probe corresponding to residues 20-25 of the mature protein. The largest cDNA clone (969 base pairs) was subcloned into plasmid pIBI21, and the nucleotide sequence was determined by the dideoxynucleotide method. This clone contained the entire coding region for RfBP. The published amino acid sequence of the mature protein was confirmed. In addition, the following 17-residue signal peptide was deduced: Met-Leu-Arg-Phe-Ala-Ile-Thr-Leu-Phe-Ala-Val-Ile-Thr-Ser-Ser-Thr-Cys. Unexpectedly, the nucleotide sequence codes for 2 adjacent arginine residues at the carboxyl terminus that are not observed in the mature protein. The amino acid sequence of RfBP is homologous with bovine milk folate-binding protein. Eight of the nine pairs of cysteines involved in disulfide bonds in RfBP are conserved in folate-binding protein, as are all of the tryptophan residues. Sequence identity between homologous regions of these two vitamin-binding proteins is more than 30%.  相似文献   
9.
王成武  崔彪  汪宙峰  谢亮  陈雅靓 《生态学报》2022,42(9):3794-3805
自然保护区是为保护具有代表性的生态系统和濒危动植物而划分的特定区域,在涵养水土,防风固沙、净化空气、保护生物多样性等方面发挥着重要作用。四川省有自然保护区166处,类型丰富多样,是中国自然保护地体系的重要组成部分,其保护对象涵盖珍稀动植物,保护功能涉及物种、水源和生态环境,与国家地质公园、湿地公园、森林公园等共同维系着中国西南地区,乃至青藏高原东缘的生态系统。因此,研究四川省自然保护区的空间分布格局及其影响因素具有重要的价值和意义。运用地理空间分析方法对1963-2018年间四川省自然保护区的空间分布和影响因素进行了研究。研究发现:①四川省自然保护区空间分布的总体特征以集聚为主,呈现集聚-随机-集聚的变化特征,且前期变化幅度大,后期变化幅度小,总体发展明显分为1963-1998年的单核形成与发展阶段和1998-2018年的双核阶段;②四川省自然保护区主要分布在成都平原向川西高原的过渡区域,其均衡度类型在时间上表现出由"差距悬殊"到"差距较大"的演变特征;③四川省自然保护区的重心活动范围相对较小,基本稳定在阿坝州南部。标准差椭圆的长短半轴和面积均变化强烈,总体呈现出大幅度的增长,空间分布由南-北向演变为东北-西南向;④自然保护区受到自然因素和社会因素的双重影响,高密度区域分布在地势适中、气候温和、河流众多、土壤肥沃、人口稀少的阿坝州南部与东部地区。未来,四川省生态功能建设应该立足国家公园、自然保护区和自然公园的特点、分布状况,对自然保护区分布较少的川西北、川东北和川南部分地区进行优化布局,以加强这些地区的生态功能建设。同时,探索自然保护区的发展模式,实现自然保护区与周边区域社会经济的协调发展。  相似文献   
10.
Background: Little is known about geographic variations in liver cancer at high incident regions. We aimed to identify spatial variation of hepatocellular carcinoma (HCC) at a high-risk area in China and determine its association with socioeconomic status (SES). Methods: Based on 2299 liver cancer cases diagnosed in Haimen from 2003 to 2006, we calculated age–sex standardized incidence ratios (SIRs) and used two spatial scan statistics to determine the geographic variations in HCC. Bayesian hierarchical model was used to explore the association between HCC incidence and SES. Results: Age and sex SIRs for HCC varied from 0.54 to 1.97 for 24 townships. The eastern region of Haimen was identified to have a significantly increased risk of HCC. Fitting of a Bayesian hierarchical model linking per-capita fiscal revenue with SIRs of HCC indicated that the area with a lower revenue had a significantly higher incidence of HCC [βlog(revenue) = ?0.179, posterior 95% Bayesian credible interval (CI) = (?0.326, ?0.04)]. Conclusions: This study demonstrated substantial geographic variation in the incidence of HCC within a high-risk region, which was associated with SES. HCC control and intervention should focus on disadvantaged areas to reduce the HCC disparities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号