首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2012年   6篇
  2011年   10篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2003年   1篇
  1999年   2篇
  1998年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1973年   1篇
排序方式: 共有45条查询结果,搜索用时 328 毫秒
1.
Of seven lipases used to esterify functionalized phenols and fatty acids to synthesize lipophilic antioxidants, that from Candida antarctica lipase B (CAL-B) had the highest catalytic activity. Esterification yields of benzoic acid derivatives catalyzed by CAL-B are below 2% after 7 days. In contrast, relatively high yields were obstained for the esterification of (poly)phenols bearing primary hydroxy groups and aliphatic acids (85% yield within 15 hours). Crude products were purified and used as lipophilic antioxidants in sunflower oil.  相似文献   
2.
Aquatic worms are a biological approach to decrease the amount of biological waste sludge produced at waste water treatment plants. A new reactor concept was recently introduced in which the aquatic oligochaete Lumbriculus variegatus is immobilised in a carrier material. The current paper describes the experiments that were performed to test whether this concept could also be applied in continuous operation, for which worm growth is an important condition. This was tested for two mesh sizes of the carrier material. With an increase in mesh size from 300 to 350 μm, worm biomass growth was possible in the reactor at a rate of 0.013 d−1 and with a yield of 0.13 g dw/g VSS digested by the worms. Mass balances over the worm reactors showed the importance of correcting for natural sludge breakdown, as the contribution of the worms to total VSS reduction was 41–71%.  相似文献   
3.
4.
5.
Acetate reduction is an alternative digestion process to convert organic waste into ethanol. Using acetate for fuel ethanol production offers the opportunity to use organic waste materials instead of sugar-containing feedstock. Methanogenesis, however, competes with acetate reduction for acetate and hydrogen and lowers the final efficiency. The aim of this research is to selectively inhibit methanogenesis and to enhance acetate reduction. Acetate reduction was stimulated in batch tests at pH between 4.5 and 8; and at pH 6 with and without thermal pre-treatment. It was found that methanogenesis was selectively inhibited while acetate reduction was enhanced after thermal pre-treatment incubated at pH 6. Initially the acetate reduction yielded 7.7 ± 3.2 mM ethanol with an efficiency of 60.2 ± 8.7%, but later on it was consumed to form 7.02 ± 0.85 mM n-butyrate with an efficiency of 76.2 ± 14.0%. It was the first time demonstrated that n-butyrate can be produced by mixed cultures from only acetate and hydrogen.  相似文献   
6.
Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor   总被引:1,自引:0,他引:1  
A biotechnological process is described to remove hydrogen sulfide (H(2)S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO(4) (2-)) and thiosulfate (S(2)O(3) (2-)) reducing reactor. The feasibility of biological H(2)S oxidation at pH around 10 and total sodium concentration of 2 mol L(-1) was studied in gas-lift bioreactors, using halo-alkaliphilic sulfur-oxidizing bacteria (HA-SOB). Reactor operation at different oxygen to sulfide (O(2):H(2)S) supply ratios resulted in a stable low redox potential that was directly related with the polysulfide (S(x) (2-)) and total sulfide concentration in the bioreactor. Selectivity for SO(4) (2-) formation decreased with increasing S(x) (2-) and total sulfide concentrations. At total sulfide concentrations above 0.25 mmol L(-1), selectivity for SO(4) (2-) formation approached zero and the end products of H(2)S oxidation were elemental sulfur (S(0)) and S(2)O(3) (2-). Maximum selectivity for S(0) formation (83.3+/-0.7%) during stable reactor operation was obtained at a molar O(2):H(2)S supply ratio of 0.65. Under these conditions, intermediary S(x) (2-) plays a major role in the process. Instead of dissolved sulfide (HS(-)), S(x) (2-) seemed to be the most important electron donor for HA-SOB under S(0) producing conditions. In addition, abiotic oxidation of S(x) (2-) was the main cause of undesirable formation of S(2)O(3) (2-). The observed biomass growth yield under SO(4) (2-) producing conditions was 0.86 g N mol(-1) H(2)S. When selectivity for SO(4) (2-) formation was below 5%, almost no biomass growth was observed.  相似文献   
7.
A new biotechnological process for sulphide removal is proposed. The process is based on the oxidation of sulphide into elemental sulphur, which can be removed by sedimentation. In this study it was found that elemental sulphur and sulphate are the main oxidation products of the biological sulphide oxidation. The settling characteristics become worse as the sulphide concentration increases, due to polysulphide formation. The start-up phase of this biological system is very short; Only four days are needed to reduce the sulphide concentration of 100 to 2 mg/l at a HRT (Residence time) of 22 minutes. Also some environmental factors were evaluated. The optimal pH is situated in the pH-range 8.0–8.5. Significantly lower conversion rates are found at pH = 6.5 to 7.5 and pH = 9.0, while at pH = 9.5 the sulphide oxidation capacity of the system detoriates. The process temperature was 20°C, although the optimal temperature is situated in the range 25–35°C. No substrate inhibition of sulphide was found at sulphide concentrations up to 100 mg/l.  相似文献   
8.
9.

Background

Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels.

Methods

Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier.

Results

The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster.

Conclusions

Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.  相似文献   
10.
Towards practical implementation of bioelectrochemical wastewater treatment   总被引:8,自引:0,他引:8  
Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laboratory BESs now approach levels that come close to the requirements for practical applications. However, full-scale implementation of bioelectrochemical wastewater treatment is not straightforward because certain microbiological, technological and economic challenges need to be resolved that have not previously been encountered in any other wastewater treatment system. Here, we identify these challenges, provide an overview of their implications for the feasibility of bioelectrochemical wastewater treatment and explore the opportunities for future BESs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号