首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   5篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1997年   2篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
1.
In a series of experiments spermatozoa were inseminated blindly into the vagina of ewes and then recovered at varying times after insemination. Most of the spermatozoa inseminated were lost by drainage through the vulva. The rate of loss was not affected by the motility of spermatozoa or oestrous state of the ewe. Initially after insemination the loss was not rapid with 82% of the insemination 18% of spermatozoa remained and by 12 h 10% remained. Spermatozoa were removed from the vagina during withdrawal of the penis after intromission and the extent of this loss varied between rams and with the volume of semen already in the vagina. Up to half the inseminate was lost in this way when there was 0.5 ml of semen in the vagina but only 11% was lost when the volume of inseminate was 0.1 ml. The unavoidable loss of spermatozoa may influence the quantity available for fertilizing ova.  相似文献   
2.
A comprehensive and contemporary understanding of habitat and resource requirements has been critical to the conservation of multiple taxa and ecosystems globally. Until recently, much of the ecological knowledge that contributes to conservation priorities and strategies for the Critically Endangered western ringtail possum (Pseudocheirus occidentalis) was largely derived from decades‐old observations in peppermint (Agonis flexuosa) and marri‐jarrah (Corymbia calophylla and Eucalyptus marginanta) woodlands in the northern parts of the species range. These observations do not account for more recent evidence of their flexible use of habitat resources in other regions of its range. This may represent a significant conservation opportunity for the species through the identification of additional habitats that warrant protection. In a region where knowledge of their ecology is scarce, we used scat analysis and quantitative spotlighting to determine the diet and density of western ringtail possums in three vegetation types: peppermint, sheoak (Allocasuarina fraseriana) and marri‐eucalypt (C. calophylla, E. marginanta and Eucalyptus staerii) woodlands. Given the species’ reported dependence on peppermint woodlands and dominant canopy species for food sources, we hypothesised that western ringtail possums would be most abundant in this habitat type and that their diet would comprise the foliage of few (≤2 species) canopy species. We found western ringtail possums consumed a higher diversity of plant species than expected (8–14), exhibited dietary preference for non‐dominant canopy species and were present in all sampled vegetation types at substantially higher densities than previously recorded for the region (as high as 17 possums ha?1). Our results confirm (i) the western ringtail possum is flexible in its use of habitat resources and (ii) the significant conservation value of sheoak and marri‐eucalypt woodlands in the southernmost portion of its distribution.  相似文献   
3.
Although critically endangered western ringtail possums (Pseudocheirus occidentalis) have been recorded from a variety of vegetation types in southwestern Australia, the extent to which many of these vegetation types are occupied by the species remains unknown. We conducted spotlight surveys for western ringtail possums between March and April 2018 in Albany, southwestern Australia, to determine the species’ occupancy in 2 vegetation types. Using occupancy models, we demonstrated that sheoak (Allocasuarina fraseriana) woodlands, previously unrecognized as providing western ringtail possum habitat, support the species, although the median probability of their occupancy was lower than in marri (Corymbia calophylla) and eucalypt (Eucalyptus marginata and E. staeri) woodlands. Use of trees and other habitat components by western ringtail possums varied within and between vegetation types. Sheoak woodlands are likely critical for western ringtail possums and given the apparent flexibility in vegetation types used by the species, investigation of the potential value of other vegetation types for this species has conservation merit. © 2019 The Wildlife Society.  相似文献   
4.
Endogenous retrovirus (ERV) products are recognized by T lymphocytes in mice and humans. As these Ags are preferentially expressed by neoplastic tissues, they might represent an ideal target for active immunization by genetic vaccination. However, i.m. inoculation of plasmid DNA encoding mouse gp70 or p15E, two products of the env gene of an endogenous murine leukemia virus, elicited a weak Ag-specific T lymphocyte response and resulted in partial protection from challenge with mouse tumors possessing these Ags. Depletion experiments showed that CD8(+), but not CD4(+), T lymphocytes were crucial for the antitumor activity of the vaccines. Systemic administration of agonistic anti-CD40 mAb increased the therapeutic potential of genetic vaccination, but only when given during the tumor rejection phase and not at the time of immunization. This effect correlated with a dramatic increase in the number of ERV-specific CD8(+) T lymphocytes. Adjuvant activity of CD40 agonists thus seems to be relevant to enhance the CD8(+) T cell-dependent response in tumor-bearing hosts, suggesting that sustaining tumor-specific T lymphocyte survival in subjects undergoing vaccination might be a key event in the successful vaccination with weak tumor Ags.  相似文献   
5.
6.
Erythroid cells terminally differentiate in response to erythropoietin binding its cognate receptor. Previously we have shown that the tyrosine kinase Lyn associates with the erythropoietin receptor and is essential for hemoglobin synthesis in three erythroleukemic cell lines. To understand Lyn signaling events in erythroid cells, the yeast two-hybrid system was used to analyze interactions with other proteins. Here we show that the hemopoietic-specific protein HS1 interacted directly with the SH3 domain of Lyn, via its proline-rich region. A truncated HS1, bearing the Lyn-binding domain, was introduced into J2E erythroleukemic cells to determine the impact upon responsiveness to erythropoietin. Truncated HS1 had a striking effect on the phenotype of the J2E line-the cells were smaller, more basophilic than the parental proerythoblastoid cells and had fewer surface erythropoietin receptors. Moreover, basal and erythropoietin-induced proliferation and differentiation were markedly suppressed. The inability of cells containing the truncated HS1 to differentiate may be a consequence of markedly reduced levels of Lyn and GATA-1. In addition, erythropoietin stimulation of these cells resulted in rapid, endosome-mediated degradation of endogenous HS1. The truncated HS1 also suppressed the development of erythroid colonies from fetal liver cells. These data show that disrupting HS1 has profoundly influenced the ability of erythroid cells to terminally differentiate.  相似文献   
7.
Hemopoietic cells, apparently committed to one lineage, can be reprogrammed to display the phenotype of another lineage. The J2E erythroleukemic cell line has on rare occasions developed the features of monocytic cells. Subtractive hybridization was used in an attempt to identify genes that were up-regulated during this erythroid to myeloid transition. We report here on the isolation of hemopoietic lineage switch 5 (Hls5), a gene expressed by the monocytoid variant cells, but not the parental J2E cells. Hls5 is a novel member of the RBCC (Ring finger, B box, coiled-coil) family of genes, which includes Pml, Herf1, Tif-1alpha, and Rfp. Hls5 was expressed in a wide range of adult tissues; however, at different stages during embryogenesis, Hls5 was detected in the branchial arches, spinal cord, dorsal root ganglia, limb buds, and brain. The protein was present in cytoplasmic granules and punctate nuclear bodies. Isolation of the human cDNA and genomic DNA revealed that the gene was located on chromosome 8p21, a region implicated in numerous leukemias and solid tumors. Enforced expression of Hls5 in HeLa cells inhibited cell growth, clonogenicity, and tumorigenicity. It is conceivable that HLS5 is one of the tumor suppressor genes thought to reside at the 8p21 locus.  相似文献   
8.
Clonal species are characterised by having a growth form in which roots and shoots originate from the same meristem so that adventitious nodal roots form close to the terminal apical bud of stems. The nature of the relationship between nodal roots and axillary bud growth was investigated in three manipulative experiments on cuttings of a single genotype of Trifolium repens. In the absence of locally positioned nodal roots axillary bud development within the apical bud proceeded normally until it slowed once the subtending leaf had matured to be the second expanded leaf on the stem. Excision of apical tissues indicated that while there was no apical dominance apparent within fully rooted stems and very little in stems with 15 or more unrooted nodes, the outgrowth of the two most distal axillary buds was stimulated by decapitation in stems with intermediate numbers of unrooted nodes. Excision of the basal branches from stems growing without local nodal roots markedly increased the length and/or number of leaves on 14 distally positioned branches. The presence of basal branches therefore prevented the translocation of root-supplied resources (nutrients, water, phytohormones) to the more distally located nodes and this caused the retardation in the outgrowth of their axillary buds. Based on all three experiments we conclude that the primary control of bud outgrowth is exerted by roots via the acropetal transport of root-supplied resources necessary for axillary bud outgrowth and that apical dominance plays a very minor role in the regulation of axillary bud outgrowth in T. repens.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号