首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2013年   1篇
  2007年   2篇
  2004年   1篇
  2003年   7篇
排序方式: 共有11条查询结果,搜索用时 218 毫秒
1.
The norepinephrine (NE)-induced hypertrophy of the left ventricle (LV) in the rat is preceded by increased interleukin (IL)-6 expression and associated with LV fibrosis. We have examined whether the elevated level of IL-6 may be due to mast cell degranulation. Therefore we tested the effect of cromoglycate sodium salt (cromolyn), an inhibitor of mast cell degranulation with anti-inflammatory and membrane-stabilizing activity, on the increased expression of IL-6 mRNA and of mRNAs of proteins involved in the remodelling of the extracellular matrix (ECM) which is induced by NE (0.1 mg/kg·h). After 4 h, the NE-induced increase in IL-6 mRNA expression was not influenced by cromolyn (20 mg/kg·h). Cromolyn-infusion for 3 days did not affect the extent of LV hypertrophy induced by NE, as measured by the LV weight/body weight (LVW/BW) ratio and by atrial natriuretic peptide (ANP) expression. Cromolyn induced a slight depression of the NE-induced elevation of the matrix metalloproteinase (MMP)-2. However, it did not affect the NE-induced elevated levels of mRNAs of collagen I and III and the tissue inhibitor of matrix metalloproteinase (TIMP)-2. Since cromolyn did not reduce the NE-effects in rat hearts in vivo we conclude that mast cell degranulation seems not to be involved in them.  相似文献   
2.
Whereas ATP consumption increases with neural activity and is buffered by phosphocreatine (PCr), it is not known whether PCr synthesis by ubiquitous mitochondrial creatine kinase (uMtCK) supports energy metabolism in all neurons. To explore the possibility that uMtCK expression in neurons is modulated by activity and during development, we used immunocytochemistry to detect uMtCK-containing mitochondria. In the adult brain, subsets of neurons including layer Va pyramidal cells, most thalamic nuclei, cerebellar Purkinje cells, olfactory mitral cells and hippocampal interneurons strongly express uMtCK. uMtCK is transiently expressed by a larger group of neurons at birth. Neurons in all cortical layers express uMtCK at birth (P0), but uMtCK is restricted to layer Va by P12. uMtCK is detected in cerebellar Purkinje cells at birth, but localization to dendrites is only observed after P5 and is maximal on P14. Hippocampal CA1 and CA3 pyramidal neurons contain uMtCK-positive mitochondria at birth, but this pattern becomes progressively restricted to interneurons. Seizures induced uMtCK expression in cortical layers II–III and CA1 pyramidal neurons. In the cortex, but not in CA1, blockade of seizures prevented the induction of uMtCK. These findings support the concept that uMtCK expression in neurons is (1) developmentally regulated in post-natal life, (2) constitutively restricted in the adult brain, and (3) regulated by activity in the cortex and hippocampus. This implies that mitochondrial synthesis of PCr is restricted to those neurons that express uMtCK and may contribute to protect these cells during periods of increased energy demands.  相似文献   
3.
The proinflammatory cytokines interleukin (IL)-1 and IL-6 are increased after acute myocardial infarction (MI). Moreover, serum IL-6 level is elevated after MI, but has also been associated with heart failure. In the present study, heart function was monitored in a rat model of chronic MI. Cytokine expression in the infarcted and non-infarcted myocardium as well as in hearts of sham-operated controls was measured by the ribonuclease-protection assay. To identify the cells contributing to the increased cytokine expression, we further analyzed myocytes and non-myocytes isolated in the acute phase as well as during congestive heart failure (CHF) after MI. There was a strong induction in cytokine expression in the myocytes of the infarct area 6 h after MI. In the non-infarcted myocardium, cytokine expression increased only slightly in the non-myocytes after 6 h. This was not different from sham-operated controls and may, therefore, be induced by stress and catecholamines. In CHF, however, cytokine expression level in myocytes was normal. It increased slightly but significantly in the non-myocytes 4 and 8 weeks after MI. In conclusion, we suggest that pro-inflammatory cytokines, produced by the ischemic myocytes may be involved in the initiation of wound healing of the necrotic area, whereas the effect of pro-inflammatory cytokines in CHF, if any, seems not to be crucial.  相似文献   
4.
Norepinephrine (NE) is involved in many cardiovascular diseases such as congestive heart failure. We have recently reported that NE had a comitogenic effect in isolated cardiac fibroblasts, and that it activated p42/p44 mitogen activated protein kinase (MAPK). This study was designed to characterize a possible mechanism involved in the proliferative effect of NE. Isolated rat cardiac fibroblasts were exposed to NE (10M) for up to 8 h, and interleukin-6 (IL-6) expression was measured by Ribonuclease Protection Assay and Western blotting. The activity of p42/p44MAPK was analyzed by Western blotting. Cell number was assessed by use of a Coulter Counter. IL-6/GAPDH mRNA was increased by NE in a time-dependent manner reaching 23 fold stimulation after 1 h compared to untreated samples. Immunoreactivity to IL-6 was not found in controls. After 16h of exposure to NE, IL-6 protein was detected. It further increased up to 48 h. The effect of NE on IL-6 mRNA was abolished by the -adrenoceptor blockers propranolol, metoprolol (1) and ICI 118.551 (2), but not by the -adrenoceptor blockers prazosin (1) and yohimbine (2). The MAPK-inhibitor PD98059 suppressed the NE-induced MAPK activation in a concentration-dependent fashion after 5 min, attenuated the NE-induced IL-6 expression after 2 h, and suppressed the proliferative effect of NE from 53 to 18% after 48 h. Recombinant IL-6 caused an increase in proliferation by 31% after 48 h. Simultaneous application of the IL-6 antibody reduced the NE-induced proliferation to 34%, and completely prevented the IL-6 induced effect. These results suggest that NE induces proliferation of rat cardiac fibroblasts in part by increasing the expression of IL-6 through regulation of MAPK.  相似文献   
5.
The pro-inflammatory cytokines interleukin (IL)-1 and IL-6 have been shown to be upregulated in the myocardium after injury and after adrenergic receptor stimulation. Together with other cytokines, such as the transforming growth factor (TGF)-, the pro-inflammatory cytokines have been implicated in the initiation of tissue repair and wound healing after myocardial infarction (MI). In the present study, the effect of -adrenergic receptor blockade with propranolol (2 mg/kg·h s.c. by miniosmotic pumps) on cardiac cytokine expression and on wound healing was analyzed in rats from 6–72 h after MI. IL-1 and IL-6 gene expression strongly increased in the infarcted myocardium 6 h after MI and peaked after 12 h, while TGF-, progressively increased from 12 h onwards. Also, TGF-2 increased after 12 h, peaked after 24 h and declined thereafter, while TGF-, was only elevated after 72 h. Treatment with propranolol had a negative chronotropic effect throughout the observation period of 72 h. It attenuated the initial elevation in LVEDP and increased cardiac output ultimately. Furthermore, propranolol attenuated IL-1 mRNA expression, but had not effect on the other cytokines. Moreover, MMP-9 gelatinolytic activity was markedly attenuated by propranolol indicating a delayed resorption of the necrotic tissue and, possibly, collagen turnover. Replacement by scar tissue, however, was not affected as indicated by normal collagen expression.  相似文献   
6.
In various models of cardiac hypertrophy, e.g. treatment of rats with norepinephrine infusion or pressure overload, increased expression of cytokines together with increase in extracellular matrix proteins (ECMP) was reported. In this study the effect of triiodothyronine (T3) on the expression of mRNA for cytokines and ECMP was investigated. Female Sprague-Dawley rats were treated daily with T3 in a dose of 0.2 mg.kg–1 of body weight s.c. Changes in the left (LV) and right (RV) ventricular function were measured 6, 24, 48, 72 h and 7 and 14 days after the first T3-injection using Millar ultraminiature pressure catheter transducers. RNA was isolated from LV and RV tissue, and the expression of cytokines and ECMP was measured using the ribonuclease protection assay. T3-treatment induced a significant increase in LV dP/dtmax and RV dP/dtmax, (p < 0.05) 24 h after the first injection of T3 together with an increase in heart rate (p < 0.01). The RV systolic pressure increased 48 h after the first T3 injection, whereas the LV systolic pressure remained unchanged. After 48 h the heart weight to body weight ratio was increased (p< 0.01). Hypertrophy of the RV was more prominent than that of the LV (155.9 vs. 137.7%).In all groups the expression of mRNA for interleukins (IL) IL-6, IL-1, IL-1 and tumour necrosis factor (TNF)- in both ventricles did not change (p > 0.05). There was a significant increase in the mRNA for colligin 24 h after the T3 injection in both LV (p < 0.01) and RV (p< 0.05). This was followed by an increase in the mRNA for collagen I and III 72 h after the first T3-dose (p < 0.05 in RV; p < 0.01 in LV). At this point, the mRNA for tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) was increased (p < 0.01) in the LV only. Moreover, after 7 days also the mRNA for matrix metalloproteinase (MMP)-2 increased (p < 0.01) in the LV. Both, TIMP-2 and MMP-2 were increased in the RV only after 14 days (p < 0.05). The gelatinase activity of MMP-2, however, was unchanged in both ventricles. The T3-induced cardiac hypertrophy was not accompanied by fibrosis as measured by the Sirius red staining after 14-days of T3-treatment. The moderate increase in mRNA for ECMP and MMP may be attributed more to the increasing mass of the ventricles with the accompanying remodelling of the ECM than to increased fibrosis.  相似文献   
7.
Stimulation with norepinephrine (NE) leads to pulmonary edema and pleural effusion in rats. These pulmonary fluid shifts may result from pulmonary congestion due to the hemodynamic effects of NE and/or inflammation with an increase in vascular permeability. The contribution of these two factors were investigated in the present study. Female Sprague–Dawley rats received continuous i.v. NE infusion (0.1 mg/kg/h) over time intervals between 90 min and 72 h. After heart catheterization, pleural fluid (PF) and lung tissue were obtained. In some of the animals, a bronchoalveolar lavage (BAL) was performed. Pulmonary edema and inflammation were shown histologically. We determined the expression of interleukin (IL)-6 as one of the most potent acute-phase protein mediators in serum, PF and BAL supernatant fluid (BALF) using ELISA as well as in the lung tissue using Western blotting. Total protein concentration in BALF and PF served as indicators of increased capillary permeability. Pulmonary edema and pleural effusion appeared coincidentally with an increase in total peripheral resistance (TPR) after 6 h of NE infusion. PF reached a maximum between 8 and 16 h (2.2 ± 0.3 ml, controls < 0.5 ml) and disappeared within 48 h. Activation of IL-6 in the fluids was observed after 8 h of NE stimulation. In the lung tissue it started after 12 h and reached 330% of the control value after 48 h. Pulmonary inflammation was documented histologically. It was accompanied by increased protein concentration in BALF after 24 h of NE treatment. Hemodynamic effects of NE are the main causative factors in the initial phase of the pulmonary fluid shifts. Additionally, NE leads to an activation of cytokines such as IL-6 and to inflammation and to an increase in capillary permeability. However, inflammation and increased capillary permeability occurred later than pulmonary edema and pleural effusion. Hence, we conclude that they are secondary factors which may contribute to maintain the fluid shifts over a longer period of time.  相似文献   
8.
BACKGROUND: Transgenic (tg) mice with chronic overexpression of the human erythropoietin gene are characterized by an increased hematocrit of about 0.80 in adulthood. This is accompanied by cardiac dysfunction and premature death. The aim of this study was to examine whether this cardiac dysfunction was accompanied by hypertrophy of the heart with remodeling of the extracellular matrix (ECM). METHODS: 3-months-old wild type (wt) and tg mice without cardiac hypertrophy were compared with the respective 7-months-old mice. The mRNA of brain natriuretic peptide (BNP), of the matrix metalloproteinases (MMP)-2, -8, -9, -13, of the tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, -4 and of collagen I and III was detected by ribonuclease protection assay. The activity of MMPs was measured by zymography. RESULTS: There was hypertrophy of both ventricles in 7-months-old tg mice, which was accompanied by elevated mRNA expression of BNP. MMP-2 activity was increased and MMP-9 activity was decreased in the left ventricle (LV) of 3-months-old tg mice. This was accompanied by elevated TIMP-4 expression, followed by a shift of collagen mRNA expression from type III to type I in this ventricle. CONCLUSION: The shift to collagen I in the heart of tg mice might be associated with a stiffer ventricle resulting in diastolic dysfunction. This may be responsible for a relative and intermittent LV- and right ventricle (RV)-insufficiency which was likely to have occurred as evidenced by the elevation of lung and liver weight with hemorrhage and interstitial fibrosis after 7 months.  相似文献   
9.
Mechanical load and chemical factors as stimuli for the different pattern of the extracellular matrix (ECM) could be responsible for cardiac dysfunction. Since fibroblasts can both synthesize and degrade ECM, ventricular fibroblasts from adult rat hearts underwent cyclical mechanical stretch (CMS; 0.33 Hz) by three different elongations (3%, 6%, 9%) and four different serum concentrations (0%, 0.5%, 5%, 10%) within 24 h. Expression of collagen I and III, as well as matrix metalloproteinase-2 (MMP-2), tissue inhibitor of MMP-2 (TIMP-2), and colligin were analyzed by RNase protection assay. In the absence of serum, 9% CMS increased the mRNA of collagen I by 1.70-fold and collagen III by 1.64-fold. This increase was prevented by the inhibition either of PKC or of tyrosine kinase but not of PKA. Inhibition of PKC or tyrosine kinase itself reduced the expression of collagen I and collagen III mRNA. The mRNA of MMP-2, TIMP-2, and colligin showed the same tendency by stretch. Combined with 10% serum, 6% CMS reduced the mRNA of collagen I (0.62-fold) and collagen III (0.79-fold). Inhibition of PKC or tyrosine kinase, but not of PKA, prevented the reduction of collagen I and collagen III mRNA in 10% serum. The results show that the response of fibroblasts to CMS depends on the serum concentration. At least two signaling pathways are involved in the stretch-induced ECM regulation. Myocardial fibrosis due to ECM remodeling contributes to the dysfunction of the failing heart, which might be attributed to changes in hemodynamic loading.  相似文献   
10.
BACKGROUND: Matrix metalloproteinases (MMPs) play an important role in myocardial remodeling. Their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The present study analyzed the contribution of changes in functional and molecular parameters to early cardiac remodeling in mice hearts. The role that TIMPs might play in this process was specially acknowledged. METHODS: The remodeling was induced by norepinephrine (NE) given sc in balb/c mice. Varying concentrations, time and the addition of a neutralizing TIMP-1 antibody were evaluated. RESULTS: High dose NE led to insufficiency of the left ventricle (LV) as evidenced by reduced NE-induced elevation of LV systolic pressure, contractility and relaxation. Further, signs of lung congestion were seen. NE induced a concentration-dependent increase of LV weight/body weight (LVW/BW) ratio and elevated mRNA expression of atrial natriuretic peptide (ANP). This was accompanied by induction of collagen type I and III, as well as TIMP-1 expression. CONCLUSIONS: The NE-induced increase of TIMP-1 expression may induce the elevation of the antihypertrophic cardiac factor ANP since NE-induced increase of ANP expression was abolished by neutralizing TIMP-1 antibody. Thus, TIMP-1 may mediate ANP-induced attenuation of NE-induced hypertrophy in the mouse heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号