首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2440篇
  免费   252篇
  2023年   18篇
  2022年   27篇
  2021年   50篇
  2020年   24篇
  2019年   30篇
  2018年   35篇
  2017年   46篇
  2016年   65篇
  2015年   94篇
  2014年   117篇
  2013年   138篇
  2012年   180篇
  2011年   178篇
  2010年   107篇
  2009年   105篇
  2008年   131篇
  2007年   122篇
  2006年   125篇
  2005年   127篇
  2004年   126篇
  2003年   98篇
  2002年   109篇
  2001年   44篇
  2000年   34篇
  1999年   41篇
  1998年   37篇
  1997年   22篇
  1996年   27篇
  1995年   34篇
  1994年   22篇
  1993年   16篇
  1992年   28篇
  1991年   19篇
  1990年   26篇
  1989年   28篇
  1988年   20篇
  1987年   18篇
  1986年   17篇
  1985年   25篇
  1984年   16篇
  1983年   16篇
  1982年   11篇
  1981年   14篇
  1980年   20篇
  1977年   8篇
  1976年   8篇
  1975年   7篇
  1974年   7篇
  1972年   9篇
  1971年   8篇
排序方式: 共有2692条查询结果,搜索用时 0 毫秒
1.
Plant chloroplasts are not only the main cellular location for storage of elemental iron (Fe), but also the main site for Fe, which is incorporated into chlorophyll, haem and the photosynthetic machinery. How plants measure internal Fe levels is unknown. We describe here a new Fe‐dependent response, a change in the period of the circadian clock. In Arabidopsis, the period lengthens when Fe becomes limiting, and gradually shortens as external Fe levels increase. Etiolated seedlings or light‐grown plants treated with plastid translation inhibitors do not respond to changes in Fe supply, pointing to developed chloroplasts as central hubs for circadian Fe sensing. Phytochrome‐deficient mutants maintain a short period even under Fe deficiency, stressing the role of early light signalling in coupling the clock to Fe responses. Further mutant and pharmacological analyses suggest that known players in plastid‐to‐nucleus signalling do not directly participate in Fe sensing. We propose that the sensor governing circadian Fe responses defines a new retrograde pathway that involves a plastid‐encoded protein that depends on phytochromes and the functional state of chloroplasts.  相似文献   
2.
By means of new plastic stereotactic ring and head fixers, stereotactic procedures can be combined with MRI, with stereotactic coordinates obtained from the MRI images. The method was rechecked against CT stereotaxy and shows a good correspondence of the target coordinates. With MRI stereotaxy, structures near bony regions will be more accessible than with CT stereotaxy. Moreover, the MRI procedure seems to have advantages for functional therapy without the necessity of contrast ventriculography.  相似文献   
3.
4.
5.
6.
7.
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline → betaine aldehyde → betaine. Our previous experiments with intact chloroplasts, and in vivo18O2 labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD Hanson, D Rhodes [1988] Plant Physiol 88: 695-702). Here, we report the detection of such an activity in vitro. In the presence of O2 and reduced ferredoxin, the stromal fraction from spinach (Spinacia oleracea) chloroplasts converted choline to betaine aldehyde at rates similar to those in intact chloroplasts (20-50 nanomoles per hour per milligram protein). Incorporation of 18O from 18O2 by the in vitro reaction was demonstrated by fast atom bombardment mass spectrometry. Ferredoxin could be reduced either with thylakoids in the light, or with NADPH plus ferredoxin-NADP reductase in darkness; NADPH alone could not substitute for ferredoxin. No choline-oxidizing activity was detected in the stromal fraction of pea (Pisum sativum L.), a species that does not accumulate betaine. The spinach choline-oxidizing enzyme was stimulated by 10 millimolar Mg2+, had a pH optimum close to 8, and was insensitive to carbon monoxide. The specific activity was increased threefold in plants growing in 200 millimolar NaCl. Gel filtration experiments gave a molecular weight of 98 kilodaltons for the choline-oxidizing enzyme, and provided no evidence for other electron carriers which might mediate the reduction of the 98-kilodalton enzyme by ferredoxin.  相似文献   
8.
Muteins, i.e. proteins altered by mutation of their genes, of interleukin 2 (Il2) were generated by oligonucleotide-directed mutagenesis in vitro. All acidic and basic residues conserved between man and mouse were exchanged as well as four lipophilic residues contained within four hydrophobic segments of the protein. The muteins were produced in Escherichia coli and submitted to a renaturation and purification protocol, before bioactivity and receptor binding of each of them was determined. All muteins besides two (K44/T125 and Q110/T125) could be renatured and purified. One mutein (K94/T125) exhibited a more than tenfold-improved renaturation yield. One amino exchange (Asp-20 to Asn) resulted in an about 20-fold reduction in proliferative activity and high-affinity receptor binding. The binding to the low-affinity Il2-binding protein (Tac antigen) was unimpaired. A second exchange (Arg-38 to Gln) had no effect on proliferative activity. The binding to both the high- and the low-affinity receptor, however, was reduced about 20-fold. Preliminary trials on the stability of these muteins by guanidinium hydrochloride denaturation studies detected no differences between wild-type interleukin 2 and muteins. It is suggested that Asp-20 forms part of the binding site for the large receptor subunit whereas Arg-38 is involved in the contact site to the small subunit.  相似文献   
9.
Summary The heart of the nudibranch mollusc Archidoris montereyensis is regulated by a small number of powerful effector neurons located in the right pleural and visceral ganglia. Two identifiable neurons in the pleural ganglion, a heart excitor (plHE) and a heart inhibitor (PlHI), are especially important regulators of cardiac function in that low levels of spontaneous activity in either cell significantly alters the amplitude and rate of heart contractions. These neurons have extensive dendritic arbors within the right pleural ganglion and branching axonal processes within the visceral ganglion. The visceral ganglion also contains a heart excitor neuron (VHE) and at least two heart inhibitor neurons (VHI cells), but their influence on cardiac activity is weaker than that of the pleural ganglion cells. All of these heart effector cells appear to be motor neurons with axons that terminate predominately in the atrio-ventricular valve region of the heart via the pericardial nerve. The simplicity and strength of these neuronal connections to the heart of Archidoris make this a favorable preparation for studies of cardiac regulation.Abbreviations Pl HE pleural ganglion heart excitor neuron - Pl HI pleural heart inhibitor neuron - V HE visceral ganglion heart excitor neuron - V HI cells, visceral heart inhibitor neurons - V K visceral kidney excitor neuron - V G visceral gill excitor neuron  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号