首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   25篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   15篇
  2014年   20篇
  2013年   21篇
  2012年   24篇
  2011年   15篇
  2010年   14篇
  2009年   16篇
  2008年   20篇
  2007年   19篇
  2006年   16篇
  2005年   18篇
  2004年   17篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有341条查询结果,搜索用时 31 毫秒
1.
Streptococcal M protein, a dimeric alpha helical coiled-coil molecule, is an antigenically variable virulence factor on the surface of the bacteria. Our recent conformational analysis of the complete sequence of the M6 protein led us to propose a basic model for the M protein consisting of an extended central coiled-coil rod domain flanked by a variable N-terminal and a conserved C-terminal end domains. The central coiled-coil rod domain of M protein, which constitutes the major part of the M molecule, is made up of repeating heptads of the generalized sequence a-b-c-d-e-f-g, wherein a and d are predominantly apolar residues. Based on the differences in the heptad pattern of apolar residues and internal sequence homology, the central coiled-coil rod domain of M protein could be further divided into three subdomains I, II, and III. The streptococcal sequelae rheumatic fever (RF) and acute glomerulonephritis (AGN) have been known to be associated with distinct serotypes. Consistent with this, we observed that the AGN associated M49 protein exhibits a heptad motif that is distinct from the RF associated M5 and M6 proteins. Asn and Leu predominated in the a and d positions, respectively, in subdomain I of the M5 and M6 proteins, whereas apolar residues predominated in both these positions in the M49 protein. To establish whether the heptad motif of M49 is unique to this protein, or is a general characteristic of nephritis-associated serotypes, the amino acid sequence of M57, another nephritis-associated serotype, has now been examined. The gene encoding M57 was amplified by PCR, cloned into pUC19 vector, and sequenced. The C-terminal half of M57 is highly homologous to other M proteins (conserved region). In contrast, its N-terminal half (variable region) revealed no significant homology with any of the M proteins. Heptad periodicity analysis of the M57 sequence revealed that the basic design principles, consisting of distinct domains observed in the M6 protein, are also conserved in the M57 molecule. However, the heptad motif within the coiled-coil subdomain I of M57 was distinct from M5 and M6 but similar to M49. Similar analyses of the heptad characteristics within the reported sequences of M1, M12, and M24 proteins further confirmed the conservation of the overall architectural design of sequentially distinct M proteins. Furthermore, the heptad motif within subdomain I of the AGN-associated serotypes M1 and M12 was similar to M49 and M57, whereas that of the RF associated M24 was similar to the M5 and M6 proteins. These results clearly demonstrate a correlation between the heptad motifs within the distal coiled-coil subdomain of the M proteins from different streptococcal serotypes and their epidemiological association with the sequelae AGN and RF.  相似文献   
2.
Group A streptococcal Pep M5 protein, an antiphagocytic determinant of the bacteria, is an alpha-helical coiled-coil molecule, and exhibits significant sequence homology with tropomyosin and myosin, but to a lesser degree with other coiled-coil proteins. Moreover, Pep M5 is more homologous to myosin than to tropomyosin, and the homologies are more numerous between the C-terminal domain of the Pep M5 protein and the S2 fragment of myosin. The C-terminal domain of the Pep M5 protein exhibits extensive sequence identity with the C-terminal region of Pep M6 molecule, another M protein serotype. Thus, regions within two M protein serotypes are homologous to the S2 region of the myosin molecule. These observations are consistent with the immunological findings of other investigators and thus may explain some of the previously reported immunological cross-reactions between antigens of the group A streptococcus and mammalian heart tissue.  相似文献   
3.
Transgenic swine expressing human HbA contained only one of two types of the anticipated interspecies hybrids, namely H alpha 2 P beta 2 (H = human, P = swine). In an attempt to establish whether the absence of the swine alpha and human beta (P alpha 2 H beta 2) hybrid in vivo is a reflection of the lack of complementarity between the interspecies chains to generate appropriate interfaces, we have undertaken the in vitro assembly of swine alpha and human beta chimeric tetramer. In contrast to the in vivo transgenic swine system, in vitro the hybrid of swine alpha human beta chain is assembled readily and the hybrid exhibits normal cooperative oxygen binding. Both the swine alpha human beta and the human alpha swine beta interspecies hybrids are stable around neutral pH and do not segregate into parent tetramers even when mixed together. On the other hand, nearly complete exchange of P alpha chain of P alpha 2 H beta 2 hybrid occurs in the presence of H alpha chain at pH 6.0 and room temperature, resulting in the formation of HbA. However, very little of such an exchange reaction takes place at pH 7.0. These results suggest that the thermodynamic stability of P alpha 2 H beta 2 hybrid is lower compared to that of HbA. In contrast, P beta chain of H alpha 2 P beta 2 hybrid is refractory to exchange with H beta chain at pH 7.0 as well as at pH 6.0, suggesting that the stability of H alpha 2 P beta 2 is higher compared to that of HbA (H alpha 2 H beta 2). The swine alpha human beta chimeric Hb undergoes subunit exchange reaction with human alpha-chain in the presence of 0.9 M MgCl2, at pH 7.0. This demonstrates the lower thermodynamic stability of the intradimeric interactions of the heterodimer even at neutral pH. A synergistic coupling of the intra- and interdimeric interactions of the swine alpha and human beta chain heterodimer is essential for the thermodynamic stability of the chimeric Hb under the physiological conditions. Accordingly, we speculate that the lower thermodynamic stability of P alpha H beta heterodimer (compared to the homodimers H alpha H beta and P alpha P beta) facilitates its segregation into the homodimers by subunit exchange reaction involving either H alpha or P beta. This molecular aspect by itself or possibly along with other cellular aspects of the swine system results in the absence of P alpha 2 H beta 2 hybrid in transgenic swine expressing HbA.  相似文献   
4.
5.
The dimethyl ester of bovine pancreatic ribonuclease-A (dimethyl RNAase-A), the initial product of esterification of RNAase-A in anhydrous methanolic HCl, was isolated in a homogeneous form. The two carboxy functions esterified in this derivative are those of glutamic acid-49 and aspartic acid-53. There were no changes in the u.v.-absorption spectral characteristics, the accessibility of the methionine residues, the resistance of the protein to proteolysis by trypsin and the antigenic behaviour of RNAase-A as a result of the esterification of these two carboxy groups. Dimethyl RNAase-A exhibited only 65% of the specific activity of RNAase-A, but still had the same Km value for both RNA and 2′:3′-cyclic CMP. However, the Vmax. was decreased by about 35%. On careful hydrolysis of the methyl ester groups at pH9.5, dimethyl RNAase-A was converted back into RNAase-A. Limited proteolysis of dimethyl RNAase-A by subtilisin resulted in the formation of an active RNAase-S-type derivative, namely dimethyl RNAase-S, which was chromatographically distinct from dimethyl RNAase-A and had very nearly the same enzymic activity as dimethyl RNAase-A. Fractionation of dimethyl RNAase-S by trichloroacetic acid yielded dimethyl RNAase-S-protein and dimethyl RNAase-S-peptide, both of which were inactive by themselves but regenerated dimethyl RNAase-S when mixed together. Dimethyl RNAase-A-peptide was identical with RNAase-S-peptide. RNAase-S-protein could be generated from dimethyl RNAase-S-protein by careful hydrolysis of the methyl ester groups at pH9.5. The interaction of dimethyl RNAase-S-protein with RNAase-S-peptide appears to be about 4-fold weaker than that between the RNAase-S-protein and RNAase-S-peptide. Conceivably, the binding of the S-peptide `tail' of dimethyl RNAase-A with the remainder of the molecule is similarly weaker than that in RNAase-A, and this brings about subtle changes in the geometrical orientation of the active-site amino acid residues of these modified methyl ester derivatives. It is suggested that these changes could be responsible for the generation of the catalytically less-efficient RNAase-A and RNAase-S molecules (dimethyl RNAase-A and dimethyl RNAase-S respectively).  相似文献   
6.
Murine myeloma immunoglobulin (IgA, K) J539, which shows enhanced tryptophanyl fluorescence on ligand binding, and S10, which shows reverse-sign changes in tryptophanyl fluorescence on ligand binding (RLIF, see below), have been reduced, alkylated, and dissociated into their light (L) and heavy (H) chains. Two hybrid recombinants, H10L539 and H539L10, have been prepared and the 7S material has been isolated by chromatography. The binding behavior of these recombinants was studied with a number of ligands. Both recombinants showed activity with beta(1 leads to 6) linked galactose ligands comparable to the native immunoglobulins. The ligand-induced fluorescence changes of the recombinants paralleled those of the heavy chain donor. For the recombinant H10L539, two different galactose-ligands caused fluorescence changes in opposite directions. It was quantitatively shown that binding of these ligands, nevertheless, took place in the same combining region. The idiotype of each recombinant resembled that of the heavy chain donor.  相似文献   
7.
Summary Two antitubercular drugs, viz., isoniazid (INH) and para-aminosalicylic acid (PAS), in combination, were evaluated for their in vivo clastogenic effects on human lymphocyte chromosomes. Lymphocyte cultures from tuberculosis patients taking a therapeutic dose of INH and PAS for a period of not less then 3 months and from two sets of controls were used: (1) newly diagnosed tuberculosis patients who were not yet under therapy and (2) healthy individuals from the general population. Chromosome aberration frequency was very significantly increased in the patients exposed to combined INH and PAS therapy as compared with controls. The most frequently observed aberrations were chromatid breaks and gaps. Isoniazid, the major antituberculosis drug, has been reported not to be clastogenic by itself. However, we observed that the INH-PAS combination commonly used in therapy was clastogenic. From this observation it may be concluded that INH and PAS act synergistically in producing chromosomal aberrations.  相似文献   
8.
Summary A cluster analysis based on codon usage in genes for biological nitrogen fixation (nif genes) grouped diazotrophs into three distinct classes: anaerobes, cyanobacteria, and aerobes. In thenif genes ofKlebsiella pneumoniae there was no evidence for selection pressure in favor of highly translatable codons. However, in the nitrogen regulatory operonglnAntrBntrC of enteric bacteria the stoichiometrically high level of glutamine synthetase may be facilitated by the presence of efficiently translatable codons inglnA. Thenif genes of the cyanobacteriumAnabaena showed codon selection in favor of translational efficiency. Computation of codon adaptation indices for expression in heterologous systems indicated that the reading frames most suitable for expression ofnif genes inEscherichia coli, Bacillus subtilis, andSaccharomyces cerevisiae were present in azotobacters, clostridia, and cyanobacteria, respectively. In codon-usage-based cluster analysis, type 3 nitrogenase genes ofAzotobacter vinelandii grouped along with type 1 and type 2 genes. This is in contrast to the nucleotide sequence-based multiple alignment in which type 3 nitrogenase genes ofA. vinelandii have been reported to cluster with entirely unrelated diazotrophs such as methanogens and clostridia. This may be indicative of lateral transfer ofnif genes among widely divergent taxons. The chromosomal- and plasmid-locatednif genes of rhizobia also cluster separately in nucleotide sequence-based analysis but showed similar codon usage. These analyses suggested that the phylogeny ofnif genes drawn on the basis of nucleotide sequence homology was not masked by the taxon-specific pressure on codon usage.  相似文献   
9.
Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.  相似文献   
10.
PEGylation induced changes in molecular volume and solution properties of HbA have been implicated as potential modulators of its vasoconstrictive activity. However, our recent studies with PEGylated Hbs carrying two PEG chains/Hb, have demonstrated that the modulation of the vasoconstrictive activity of Hb is not a direct correlate of the molecular volume and solution properties of the PEGylated Hb and implicated a role for the surface charge and/or the pattern of surface decoration of Hb with PEG. HbA has now been modified by thiolation mediated maleimide chemistry based PEGylation that does not alter its surface charge and conjugates multiple copies of PEG5K chains. This protocol has been optimized to generate a PEGylated Hb, (SP-PEG5K)6-Hb, that carries ~six PEG5K chains/Hb – HexaPEGylated Hb. PEGylation increased the O2 affinity of Hb and desensitized the molecule for the influence of ionic strength, pH, and allosteric effectors, presumably a consequence of the hydrated PEG-shell generated around the protein. The total PEG mass in (SP-PEG5K)6-Hb, its molecular volume, O2 affinity and solution properties are similar to that of another PEGylated Hb, (SP-PEG20K)2-Hb, that carries two PEG20K chains/Hb. However, (SP-PEG5K)6-Hb exhibited significantly reduced vasoconstriction mediated response than (SP-PEG20K)2-Hb. These results demonstrate that the enhanced molecular size and solution properties achieved through the conjugation of multiple copies of small PEG chains to Hb is more effective in decreasing its vasoconstrictive activity than that achieved through the conjugation of a comparable PEG mass using a small number of large PEG chains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号